
 1 

Supplementary material 

Smoothed distance 

If {𝑑𝑖} is the sequence of the distance function, where the index 𝑖 takes values from 1 to the 

maximum of data N, then the values for the smoothed distance function sequence {�̅�𝑖}, are 

determined as follows for a radius of K frames around each value. For 𝐾 < 𝑖 < 𝑁 − 𝐾, 

�̅�𝑖 =
1

2𝐾 + 1
∑ 𝑑𝑗 .

𝑖+𝐾

𝑗=𝑖−𝐾

 

The first K terms of {�̅�𝑖}, for 1 ≤ 𝑖 ≤ 𝐾, are determined by 

�̅�𝑖 =
1

𝐾 + 𝑖
∑𝑑𝑗

𝑖+𝐾

𝑗=𝑖

. 

While the last K terms of {�̅�𝑖}, for 𝑁 − 𝐾 ≤ 𝑖 ≤ 𝑁, are defined by the formula 

�̅�𝑖 =
1

𝐾 + 𝑁 − 𝑖
∑ 𝑑𝑗

𝑁

𝑗=𝑖−𝐾

. 

Recurrence 

The recurrence plot is defined by symmetric matrix 𝐴 = [𝑎𝑖𝑗] with dimensions 𝑁 × 𝑁, in 

which the inputs are determined by the following function:  

𝑎𝑖𝑗 = {
black, if 𝑃𝑗 ∈ 𝑅𝑘 and 𝑃𝑖 ∈ 𝑅𝑘, 

white, if 𝑃𝑗 ∉ 𝑅𝑘 and 𝑃𝑖 ∈ 𝑅𝑘,
 

where 𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … ,𝑁; 𝑘 = 1,2, … ,100. That is, the matrix 𝐴 (recurrence plot) 

is a matrix of time (frame=.2 sec) per time (frame=.2 sec), from i to j. 𝑃𝑗 is a given frame 

and 𝑅𝑘 is a given region (one of hundred regions). If given frames 𝑃𝑖 & 𝑃𝑗 coincide in 𝑅𝑘, 

then the value 𝑎𝑖𝑗 =black in the intersection between  𝑃𝑖 & 𝑃𝑗 in the matrix 𝐴. If given 

frames 𝑃𝑖 & 𝑃𝑗 do not coincide in 𝑅𝑘, then the value 𝑎𝑖𝑗 =white in the intersection between 

𝑃𝑖 & 𝑃𝑗 in the matrix 𝐴. 

Entropy 

The concept of entropy was introduced by Shannon (1948). Entropy is a measure associated 

with a discrete random variable, which indicates variability within a distribution. Thus, 

Shannon entropy is a continuous, monotonic, and linear indicator of how different the 

distribution elements are from each other (Carcassi, Aidala & Barbour, 2021). In our work 

a statistical distribution. 
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Formally, given a discrete random variable 𝑋 with possible outcomes {𝑥𝑖}, each 

with probability 𝑃(𝑥𝑖), the entropy 𝐻(𝑋, 𝑃) is as follows 

𝐻(𝑋, 𝑃) = −∑𝑃(𝑥𝑖) 𝑙𝑛(𝑃(𝑥𝑖)). 

It can be proven that the entropy of a discrete random variable is a non-negative number, 

𝐻(𝑋, 𝑃) ≥ 0, and its measure should be maximal if all the outcomes are equally likely 

(uncertainty is highest when all possible events are equiprobable). 

To analyze the displacement pattern of individuals in each session, the discrete 

random variables {𝑥𝑖} are the permanence in each defined zone from a configuration of 

10 × 10 defined zones and 𝑃(𝑥𝑖) is accumulated time (standardized) at it. 

Divergence 

The Kullback-Leibler divergence was introduced by Kullback & Leibler (1951) and 

discussed by Kullback (1959). The Kullback-Leibler divergence (or relative entropy) is a 

measure of difference from first one probability distribution to second one.  

For discrete probability distributions 𝑃 and 𝑄 defined on the same random variable 

𝑋, with possible outcomes {𝑥𝑖}, the Kullback–Leibler divergence from 𝑄 to 𝑃 is defined as 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) =∑𝑃(𝑥𝑖)𝑙𝑛 (
𝑃(𝑥𝑖)

𝑄(𝑥𝑖)
)

𝑖

. 

The Kullback-Leibler divergence is defined only if for all 𝑥, 𝑄(𝑥) = 0 implies 𝑃(𝑥) = 0. 

Whenever 𝑃(𝑥) is zero, the contribution of the corresponding term is interpreted as zero. 

The KL divergence 𝐷𝐾𝐿(𝑃 ∥ 𝑄) can be thought of as something like a measurement 

of how far the distribution 𝑄 is from the distribution 𝑃, because it is always non-negative 

(𝐷𝐾𝐿(𝑃 ∥ 𝑄) ≥ 0) and a result known is 𝐷𝐾𝐿(𝑃 ∥ 𝑄) zero if and only if 𝑃 = 𝑄, this is a 

Kullback–Leibler divergence of 0 indicates that the two distributions in question are 

identical. However, it is not symmetric; that is, 𝐷𝐾𝐿(𝑃 ∥ 𝑄) ≠ 𝐷𝐾𝐿(𝑄 ∥ 𝑃). 

To analyze the displacement pattern of individuals in consecutive sessions, the 

discrete random variables {𝑥𝑖} are the permanence in each square region from a 

configuration of 10 × 10 defined zones and 𝑄(𝑥𝑖) is the accumulated time (standardized) 

at the first session and 𝑃(𝑥𝑖) is the accumulated time (standardized) at the second one. 

Variable ranking 

The variable ranking is a lenient version of feature selection, which consists of ordering a 

set of features (input variables) normally by the value of a scoring function that measures 

the relevance of each feature according to a target (or output variable) as a predicting tool. 

Feature selection could be too rigid for some applications where determining the variables 
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that must be removed or preserved is not clear, given that all features are required to 

explain or predict a target value. Still, the relevance of some features is higher for the 

investigation. Thus, even in some cases, variable ranking is the first phase for variable 

selection. 

The algorithms for variable ranking are divided into two main classes: wrappers and 

filters. On the one hand, we can find several wrappers algorithms; most of them rely on 

training a machine learning algorithm like SVM or Decision Tree to estimate the quality of 

a subset of features of the dataset to predict the target variable. On the other hand, this 

approach could consume a large amount of computing resources for high-dimensional 

datasets when looking for a minimal optimal feature set.  

On the other hand, filter algorithms are the most widely used due to the low 

computing resources used to apply them, even on high-dimensional datasets. There are 

versions for single or multiple variable classifications, and their implementation also 

depends on whether the target variable is numerical or categorical. Since, in our 

experiments, the data sets have only categorical targets, we opted for this approach. Three 

theoretical information filter algorithms, conducted using Orange© 3.26, were used for the 

classification of a single variable ranking: information gain, mean decrease Gini, and 𝝌𝟐. 

We will denote by T the set of training samples in the form of tuples (𝑥, 𝑦) =
(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑦), where 𝑥𝑎 is the value of the 𝑎𝑡ℎ feature (e.g., mean distance to the 

relevant object, mean velocity, entropy, and so on)  of the example x and y is the 

corresponding target variable to a class label (e.g., water deprivation; food deprivation). 

t-SNE 

The t-distributed Stochastic Neighbor Embedding is a Machine Learning algorithm 

commonly used to visualize high-dimensional datasets into a 2D o 3D space. In broad 

terms, t-SNE performs a non-linear dimensionality reduction task for embedding datasets 

and obtaining low dimension transformations. This reduction of dimensionality is suitable 

for visualization where data entries with similar values for the features taken as inputs 

would be closer to each other than entries with dissimilar values. The relations between 

inputs that might be impossible to observe due to a large number of variables would be 

distinguished after transforming them into a space with reduced dimension. The t-SNE 

analysis was conducted using Orange© 3.26 

The t-SNE algorithm performs two phases to transform input data. First, it builds a 

probability distribution with each pair of high-dimension data entries looking for similar 

data to obtain a higher probability and place them closer together, and a lower probability 

for data with values that have a significant difference between them. The second phase 

involves defining a probability distribution over a reduced dimension space (2D or 3D) and 

minimizing the Kullbak-Leibler Divergence between them through the gradient descent 

algorithm, normally training a neural network. By reducing the differences between 

probability distributions, a high dimension space is transformed to a low dimension space, 

preserving the relationships among data entries given the values of its features. 
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For calculating the t-SNE, given a dataset X with a length N, for each pair of data 

entries xi and xj, the probability distribution in the first stage is calculated by 

𝑃(𝑖, 𝑗) =
𝑃(𝑖|𝑗) +  𝑃(𝑗|𝑖)

2𝑁
, 

where the conditional probability 𝑃(𝑖|𝑗) is computed by using 

𝑃(𝑖|𝑗) =

{
 
 

 
 exp(−

‖𝑥𝑖 − 𝑥𝑗‖
2

2𝜎𝑖
2 )

∑ exp (−
‖𝑥𝑖 − 𝑥𝑘‖2

2𝜎𝑖
2 )𝑘≠𝑖

, 𝑖𝑓 𝑖 ≠ 𝑗,

0, 𝑖𝑓 𝑖 = 𝑗.

. 

In the last expression, ‖𝑥𝑖 − 𝑥𝑗‖ denotes the Euclidian distance between data entries, but 

another distance metric could be used. For the second phase, points Y = (y0, y1, y2, …, yN) 

are found in such a way that minimizes the Kullback-Leibler Divergence between 𝑃(𝑖|𝑗) 
and 𝑄(𝑖|𝑗), where if 𝑖 ≠ 𝑗 then  

𝑄(𝑖|𝑗) =

1

1 + ‖𝑦𝑖 − 𝑦𝑗‖
2

∑ ∑ exp (
1

1 + ‖𝑦𝑘 − 𝑦𝑙‖2
)𝑘≠𝑙𝑘

 

and it is equal to 0 in another case. 

Linear Projection for Visualization of multidimensional datasets 

Data Visualization is a powerful tool for data analysis in several stages of data processing. 

It plays a critical role in exploratory data analysis and data mining tasks. However, the 

visualization of datasets with more than two or three dimensions (variables) represents a 

challenge using conventional plotting 2D or 3D. A series of methods have been developed 

to solve this problem, in which linear projections are made to reduce multidimensional data 

presented in two or three dimensions. Several methods exist for performing those linear 

projections; examples are Linear Discriminant Analysis, Principal Components Analysis, 

Orthogonal Projection, Linear Regression, among others.  

In general, a linear projection could be described as a linear transformation P from a 

vector space to the same vector space that satisfies 𝑃2=𝑃 . Thus, several projections could 

be performed for a given dataset, resulting in various graphs expressing different facets of 

the dataset. When a class separation is a purpose for the projection, choosing the 

appropriate parameters and method is crucial, as could be appreciated in the image below. 

 



 5 

                   

Fig. A Fig. B 

In the figure, we observe the same class-labeled multidimensional dataset being 

projected over two different linear models. In Fig. A, the resulting projection combines the 

entries from the two classes and does not help to separate them. While in figure B, the same 

dataset is correctly separated by classes. Two linear models have been created for the 

projection, being different in the parameters used to construct them, showing the benefits of 

an adequate linear projection for analyzing multidimensional datasets. In this work, the 

Linear Projection was conducted using Orange© 3.26  

K-means 

K-means is an algorithm that aims to generate clusters of an observed dataset {𝑥𝑖} of 𝑛 

observations into 𝑘 groups. Each group is represented by the average of the points that 

compose it. Thus, the centroid is the representative of each group. The number of groups to 

discover, k, is a parameter that must be configured a priori. The clustering method starts 

with k randomly located centroids and assigns each observation to the closest centroid. The 

centroids, once assigned, are moved to the average location of all assigned data; then, the 

points are again assigned according to the location of the new centroids. 

The objective of K-means is to group the observations in such a way that all those 

that are in the same group are the most similar to each other and that those that belong to 

different groups are the most dissimilar to each other. Distance measures, such as 

Euclidean, are used to measure similarities and differences. A measure of how well the 

centroids 𝑀𝑡 = (𝑚1
𝑡 ,𝑚2

𝑡 , … ,𝑚𝑘
𝑡 ), at iteration 𝑡, represent the members of your group is the 

sum of the squared errors. In each iteration t, K-means tries to reduce the value of the sum 

of the errors squared. The measure consists of the sum of the squared distances of each 

observation 𝑥𝑖from the centroid of its group 

𝑀𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛∑∑||

𝑛

𝑖=1

𝑥𝑖

𝑘

𝑗=1

−𝑚𝑗
𝑡−1||. 

The algorithm is iterative and always concludes, either by a fixed number of 

iterations or when it converges to a solution (total error due to assignations remains the 

same as in the previous iteration). Since it does not necessarily find the most optimal 
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configuration, the one corresponding to the minimum of the objective function is shown. 

Finding a minimum of the function, even if it is not the absolute minimum, guarantees a 

grouping in which the groups are sparsely dispersed and separated from each other. The 

algorithm is significantly sensitive to centroids that are initially randomly selected. This 

effect can be reduced by performing multiple runs of the method. The clustering by K-

means was conducted using Orange© 3.26  
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