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APPENDIX A: MODEL DERIVATION
This Appendix details the derivation of the flexible-joint space manipulator with floating base model.
The flexible joint model is based on (Spong, 1987), while the spatial algebra approach (utilizing the
Newton-Euler method) used to derive the arm dynamics is based on (Jain, 2010).

We make two key assumptions in our derivation: that the motors can be modeled by 1-D rotational
inertias, and that the kinetic energy of the motors is due only to their own rotation relative to the stator (i.e.,
we ignore the inertial coupling between the motors and the arm links). The motor dynamics are then easily
derived through applying Euler’s laws, and are presented in Section 3.Similarly, the joint torque τ due to
the flexible connection between the motor and link is easily derived and presented in Section 3.

We will consider a serial chain with only rotation joints, with i = B, 1, ...n. Let hi, fi be the axis of
rotation of the ith joint and the spatial force at the ith joint, represented in the ith joint frame. Define

Hi ∈ R6 =

[
hi
0

]
, ∀i = 1, ...n. (A.1)

Therefore,
τi = HT

i fi. (A.2)

Note that HB = I ∈ R6, where I is the identity matrix.

We first consider the boundary conditions. Assuming negligible gravitational effects, we set the boundary
conditions as

V0 = 0, α0 = 0, fn+1 = f, (A.3)

where V0 and α0 are the spatial velocity and acceleration boundary conditions, respectively. Here, n+ 1
denotes the end effector frame.

Next, we consider the spatial velocity and acceleration propagation. The spatial velocity propagation is
given by

Vi+1 = Φi+1,iVi +Hi+1q̇i+1, (A.4)

where

Φi+1,i =

[
Ri+1,i 0

−Ri+1,ip
×
i,i+1 Ri+1,i

]
. (A.5)

Here, Rij denotes the rotation matrix from the ith frame to the jth frame, and pij denotes the vector from
the ith frame to the jth frame, represented in the ith frame. Note that Φi+1,i is therefore dependent on q.
The spatial acceleration propagation is given by

αi+1 = Φi+1,iαi +Hi+1q̈i+1 + ai+1, (A.6)

where

ai+1 =

[
(Ri+1,iωi)

×ωi+1

Ri+1,iω
×
i ω

×
i pi,i+1

]
, (A.7)

for robots with all rotational joints. The rotational velocity of the ith frame is given by ωi. Note that aB = 0.

The Newton-Euler equations for the ith body provide

Miαi + bi = fi − ΦT
i+1,ifi+1, (A.8)
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where

Mi =

[
(Ii)i mip

×
i,c

−mip
×
i,c miI

]
, (A.9)

and

bi =

[
ω×
i (Ii)iωi

miω
×
i ω

×
i pi,c

]
. (A.10)

The inertia matrix of the ith link at and represented in the ith coordinate frame is given by (Ii)i, while the
mass of the ith link is denoted by mi. The vector from the ith frame to the ith link COM, represented in the
ith frame, is given by pic.

We can then generalize these equations, noting that the spatial acceleration boundary condition is 0, and
obtain

αi =
i∑

k=B

Φik(Hkq̈k + ak), (A.11)

and

fi = ΦT
n+1,if +

n∑
k=i

ΦT
ki(Mkαk + bk). (A.12)

Define the stacked vectors and block matrices

α =

α1
...
αn

 , f̄ =

f1...
fn

 , a =

a1...
an

 ,

b =

b1...
bn

 , B =


0
...
0

ΦT
n+1,n

 ,

H =

H1 0
. . .

0 Hn

 , M =

M1 0
. . .

0 Mn

 ,

and

Φ =

Φ11 0
... . . .

Φn1 . . . Φnn

 .

These vectors and matrices are used to derive the standard manipulator arm (fixed base) dynamics. We
include them to show the relationship between the floating base and fixed base models.

Including the base, define the block matrices

α∗ =

[
αB

α

]
, f∗ =

[
fB
f̄

]
, a∗ =

[
0
a

]
,
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b∗ =

[
bB
b

]
, B∗ =

[
0
B

]
,

H∗ =

[
HB 0
0 H

]
, M∗ =

[
MB 0
0 M

]
,

and

Φ∗ =

ΦBB . . . 0
...

ΦnB

Φ

 .

Therefore,

α∗ = Φ∗(H∗
[
αB

q̈

]
+ a∗), (A.13)

and
f∗ = Φ∗TB∗f + Φ∗T (M∗α∗ + b∗) (A.14)

Substituting equation (A.13) into equation (A.14) yields

H∗T f∗ =

[
fB
τ

]
= H∗TΦ∗TB∗f +H∗TΦ∗T (M∗Φ∗(H∗ [αB q̈

]
+ a∗) + b∗

)
. (A.15)

Simplification and combining block matrices conveniently yields[
fB
τ

]
=

[
ΦT
nBΦ

T
n+1,n

HTΦTB

]
f +H∗TΦ∗T (M∗Φ∗(

[
αB

Hq̈ + a

]
) + b∗

)
,

[
fB
τ

]
=

[
ΦT
n+1,B

HTΦTB

]
f +H∗TΦ∗T (M∗

[
αB

Φ̂1αB + ΦHq̈ + Φa

]
+ b∗

)
,

[
fB
τ

]
=

[
ΦT
n+1,B

HTΦTB

]
f +H∗TΦ∗T ( [ MBαB

MΦ̂1αB +MΦHq̈ +MΦa

]
+ b∗

)
,

and[
fB
τ

]
=

[
ΦT
n+1,B

HTΦTB

]
f +

[
(MB + Φ̂2MΦ̂1)αB + Φ̂2MΦHq̈

HTΦTMΦ̂1αB +HTΦTMΦHq̈

]
+

[
Φ̂2MΦa+ bB + Φ̂2b

HTΦTMΦa+HTΦT b

]
, (A.16)

where

Φ̂1 =

Φ1B
...

ΦnB

 , (A.17)

and
Φ̂2 =

[
ΦT
1B . . . ΦT

nB

]
. (A.18)

Finally, we obtain [
fb
τ

]
=

[
Mb Mrb

Mbr Mr

] [
αB

q̈

]
+

[
CB

Cr

]
+

[
ΦT
n+1,B

JT

]
f, (A.19)
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where

Mb = MB + Φ̂2MΦ̂1,

Mrb = Φ̂2MΦH,

Mbr = HTΦTMΦ̂1,

Mr = HTΦTMΦH,

CB = Φ̂2MΦa+ bB + Φ̂2b,

Cr = HTΦTMΦa+HTΦT b.

Note that the well-known manipulator Jacobian is given by J = HTΦTB. Similarly, Mr and Cr are the
mass-inertia matrix and Centrifugal/Coriolis terms obtained for a standard fixed-base manipulator arm
(Jain, 2010).
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