
Supplementary Material: "A new criterion beyond
divergence for judging the dissipation of a system:
dissipative power"

1 SUPPLEMENTARY DATA

The linear system ẋ = f (x) can be written as

ẋ = Fx, F is a constant matrix, (S1)

here, x ∈ Rn.

Kwon, Ao and Thouless([Kwon et al., PNAS., 102(37): 13029-13033 (2005)]) have discussed
the construction of Lyapunov function of linear system(S1). And some necessary formulas are
given as follows

F = − [D + Q]U = −[S + T]−1U, (S2)

[D + Q]−1 = S + T, (S3)

FQ + QFτ = FD − DFτ, (S4)

∇ϕ(x) = Ux, (S5)

here, only the Q is unknown, U is a symmetric matrix.

Here, set F =

(
f11 f12
f21 f22

)
, Q =

(
0 q12

−q12 0

)
, D =

(
d11 d12
d12 d22

)
, and d11, d22, d22 are

chose to satisfy d11, d22 ≥ 0, d11d22 − d2
12 ≥ 0. Then, by (S4), we have{

( f11 + f22)q12 = − f21d11 + ( f11 − f22)d12 + f12d22,
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0.
(S6)

here, only q12 is unknown.

1.1 Two examples of the planar linear saddle system with zero divergence

Cansider the following linear system {
ẋ1 = x2
ẋ2 = x1

(S7)

and {
ẏ1 = y1
ẏ2 = −y2

, (S8)

which have a saddle point and the divergence equals zero.
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Here, system (S7) is written as

ẋ =

(
0 1
1 0

)
x, (S9)

here, F =

(
0 1
1 0

)
, equation (S6) can be rewritten as

{
−d11 + d22 = 0
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0
, (S10)

then, we obtain

q12 and d12 are arbitrary real numbers, d11 = d22 ≥ 0, d11d22 − d2
12 ≥ 0. (S11)

And then, we can separately rewrite system (S9) into a (generalized) Hamiltonian system or a
(generalized) gradient system by choosing one group of values in (S11):

• A (generalized) gradient system:
By (S11), we choose q12 = 0, d11 = d22 = 1 and obtain Q = 0, D = D + Q = [D + Q]−1 =

S = I, U =

(
0 −1
−1 0

)
.

Then, by (S5), the Lyapunov function of system (S9) is obtained

ϕ(x) = −x1x2. (S12)

And then, it can verify that Lyapunov function (S12) does not increase along the trajectory

dϕ

dt
= −x2

1 − x2
2 ≤ 0, (S13)

which shows that dϕ
dt is less than zero except for the equilibrium point.

The corresponding divergence div f (x) and dissipative power HP(x) are derived

HP(x) = x2
1 + x2

2 ≥ 0, (S14)

div f (x) = trace(F) ≡ 0. (S15)

By (S13) and (S14), we obtain
dϕ

dt
= −Hp(x). (S16)

Finally, system (S9) can be rewritten as

ẋ = − [D + Q]∇ϕ(x)

= − D∇ϕ(x)

= −∇ϕ(x)

=

(
0 1
1 0

)(
x1
x2

)
.

(S17)
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Obviously, system (S17) is a gradient system which is dissipative.
Here, (S14) and (S17) indicate that system (S7) is a dissipative system, which is

consistent with the result obtained by combining the monograph([Borrelli and Coleman.
Differential equations: a modeling perspective. New York: Wiley (1998). p.505.]) and
monograph([Sachdev. Nonlinear ordinary differential equations and their applications.
New York: CRC Press (1990).p.354.]). However, div f (x) ≡ 0 can not.

• A (generalized) Hamiltonian system:
By (S11), we choose q12 = 1, d11 = d22 = 0 and obtain D = S = 0, Q = D + Q =

−[D + Q]−1 =

(
0 1
−1 0

)
, U =

(
1 0
0 −1

)
, here 0 is the zero matrix.

Then, the Lyapunov function of system (S9) is obtained by (S5)

ϕ(x) =
x2

1 − x2
2

2
, (S18)

And then, it can verify that Lyapunov function (S18) does not increase along the trajectory

dϕ

dt
=

∂ϕ

∂x1
ẋ1 +

∂ϕ

∂x2
ẋ2 ≡ 0. (S19)

The corresponding divergence div f (x) and dissipative power HP(x) are derived

HP(x) = ẋτSẋ ≡ 0, (S20)

div f (x) ≡ 0. (S21)

By (S19) and (S20), we obtain
dϕ

dt
= −Hp(x). (S22)

Finally, system (S9) can be rewritten as

ẋ = − [D + Q]∇ϕ(x)

= − Q∇ϕ(x)

=

(
0 −1
1 0

)
∇ϕ(x)

=

(
0 1
1 0

)(
x1
x2

)
.

(S23)

Obviously, system (S23) is a Hamiltonian system which is conservative.
Here, (S20) and (S21) show that system (S7) is conservative at the same time. On the

other hand, that system (S7) can be rewritten into a Hamiltonian system is consistent with
the result obtained by Liouville’s Theorem([Arnold. Ordinary differential equations. New
York: Springer(1992). p.251.]).
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By reversible linear transformation x =

(
1 −1
1 1

)
y, system (S7) can be transformed into

system (S8), which can be rewritten as

ẏ =

(
1 0
0 −1

)
y, (S24)

here, F =

(
1 0
0 −1

)
, and equation (S6) can be rewritten as

{
d12 = 0
d11, d22 ≥ 0

, (S25)

then, we obtain
q12 is an arbitrary real number, d12 = 0, d11, d22 ≥ 0. (S26)

And then, we can separately rewrite system (S24) into a (generalized) Hamiltonian system or
a (generalized) gradient system by choosing one group of values in (S26):

• A (generalized) gradient system:
By (S26), we choose q12 = 0 and d11 = d22 = 1. And we obtain D = D + Q = [D + Q]−1 =

S = I, Q = 0, U =

(
−1 0
0 1

)
, here I is an identity matrix.

Then, the Lyapunov function of system (S24) is obtained by (S5)

ϕ(y) = −
y2

1 − y2
2

2
. (S27)

And then, it can verify that Lyapunov function (S27) does not increase along the trajectory

dϕ

dt
= − (y2

1 + y2
2) ≤ 0, (S28)

which shows that dϕ
dt is less than zero except for the equilibrium point.

The corresponding divergence div f (y) and dissipative power HP(y) are derived

HP(y) = y2
1 + y2

2 ≥ 0, (S29)

div f (y) = trace(F) ≡ 0. (S30)

By (S28) and (S29), we obtain
dϕ

dt
= −Hp. (S31)
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Finally, system (S24) can be rewritten as

ẏ = − [D + Q]∇ϕ(y)

= − D∇ϕ(y)

= −∇ϕ(y)

=

(
1 0
0 −1

)(
y1
y2

)
.

(S32)

Obviously, system (S32) is a gradient system, which is dissipative.
Here, (S29) and (S32) indicate that system (S8) is a dissipative system, which is

consistent with the result obtained by combining the monograph([Borrelli and Coleman.
Differential equations: a modeling perspective. New York: Wiley (1998). p.505.]) and
monograph([Sachdev. Nonlinear ordinary differential equations and their applications.
New York: CRC Press (1990).p.354.]). However, div f (y) ≡ 0 can not.

• A (generalized) Hamiltonian system:
By (S26), we choose q12 = 1, d11 = d22 = 0 and obtain D = S = 0, Q = D + Q =

−[D + Q]−1 =

(
0 1
−1 0

)
, U =

(
0 −1
−1 0

)
.

Then, the Lyapunov function of system (S24) is obtained by (S5)

ϕ(y) = −y1y2 (S33)

And then, it can verify that Lyapunov function (S33) does not increase along the trajectory

dϕ

dt
=

∂ϕ

∂y1
ẏ1 +

∂ϕ

∂y2
ẏ2 ≡ 0. (S34)

The corresponding divergence div f (y) and dissipative power HP(y) are derived

HP(y) = ẏτSẏ ≡ 0, (S35)

div f (y) = trace(F) ≡ 0. (S36)

By (S34) and (S35), we obtain
dϕ

dt
= −Hp. (S37)

Finally, system (S24) can be rewritten as

ẏ = − [D + Q]∇ϕ(y)

= − Q∇ϕ(y)

=

(
0 −1
1 0

)
∇ϕ(y)

=

(
1 0
0 −1

)(
y1
y2

)
.

(S38)

Frontiers 5



Supplementary Material

Obviously, system (S38) is a Hamiltonian system which is conservative.
Here, (S35) and (S38) show that system (S8) is conservative at the same time. On the

other hand, that system (S8) can be rewritten into a Hamiltonian system is consistent with
the result obtained by Liouville’s Theorem([Arnold. Ordinary differential equations. New
York: Springer(1992). p.251.]).

Here, we summarize the results obtained from systems (S7) and (S8) into the Table S1.

Table S1. Two criteria on the planar linear saddle system with zero divergence

Types
HP and div f Systems

ẋ =

(
0 1
1 0

)
x ẏ =

(
1 0
0 −1

)
y

(Generalized) gradient system
HP ≥ 0 HP ≥ 0

(only x1 = x2 = 0,HP = 0) (only y1 = y2 = 0,HP = 0)
div f (x) ≡ 0 div f (y) ≡ 0

(Generalized) Hamiltonian system HP ≡ 0 HP ≡ 0
div f (x) ≡ 0 div f (y) ≡ 0

1.2 The general planar linear system

By invertible linear transformation, the matrix F =

(
f11 f12
f21 f22

)
has the following four

types of Jordan’s normal form([Ma and Zhou. Qualitative and stability methods for ordinary
differential equations(in Chinese). Beijing: Science press (2013). p.100.])(

λ1 0
0 λ2

)
,
(

λ1 0
0 λ1

)
,
(

λ1 0
1 λ1

)
,
(

α β
−β α

)
, (S39)

in which λ1, λ2, α ± βi are the eigenvalues of F, λ1 ̸= λ2,
√
−1 = i and β ̸= 0.

Therefore, we will calculate the corresponding divergence div f (x) and dissipative power
HP(x) in four cases of (S39).

(1)When F =

(
λ1 0
0 λ2

)
, (S6) can be rewritten as

{
(λ1 + λ2)q12 = (λ1 − λ2)d12,
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0,
(S40)

(i)If λ1 + λ2 = 0, from (S40), we have

q12 is an arbitrary real number, d12 = 0, d11, d22 ≥ 0. (S41)
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Then, it has

D =

(
d11 0
0 d22

)
, d11, d22 ≥ 0,

Q =

(
0 q12

−q12 0

)
,

D + Q =

(
d11 q12
−q12 d22

)
,

[D + Q]−1 =
1

d11d22 + q2
12

(
d22 −q12
q12 d11

)
,

S =
1

d11d22 + q2
12

(
d22 0
0 d11

)
,

U = − [D + Q]−1A

= − λ1

d11d22 + q2
12

(
d22 q12
q12 −d11

)
,

(S42)

here, d11, d22, q12 satisfy d11d22 + q2
12 ̸= 0.

By (S42) and (S5), it can derive the Lyapunov function

ϕ(x) = −
λ1(d22x2

1 + 2q12x1x2 − d11x2
2)

2(d11d22 + q2
12)

. (S43)

Then, it can verify that the Lyapunov function does not increase along the trajectory

dϕ

dt
=

∂ϕ

∂x1
ẋ1 +

∂ϕ

∂x2
ẋ2

= −
λ2

1(d22x2
1 + d11x2

2)

d11d22 + q2
12

≤ 0,

(S44)

which shows that dϕ
dt is less than zero except for the equilibrium point.

The corresponding divergence div f (x) and dissipative power HP(x) are derived

HP(x) = ẋτSẋ

=
λ2

1(d22x2
1 + d11x2

2)

d11d22 + q2
12

(S45)

≥ 0, (S46)

div f (x) = trace(F)

= λ1 + λ2

≡ 0. (S47)
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By (S44) and (S45), we obtain
dϕ

dt
= −Hp. (S48)

In this case, HP(x) ≥ 0 in (S46) implies

• If HP(x) ≥ 0(only x1 = x2 = 0,HP = 0), system (S1) is dissipative by HP ≥ 0.
However, div f (x) ≡ 0 means that system (S1) is conservative. The conclusions by
these two criteria are completely opposite.

• If HP(x) ≡ 0, these two criteria consistently indicate that planar linear system (S1)
is conservative by HP(x) ≡ 0 and div f (x) ≡ 0.

In short, these two criteria are not always completely consistent, so further detailed
discussion and analysis are needed. Systems (S7) and (S8) have launched a detailed
discussion and analysis of this situation, and the obtained results are summarize in the
Table S1.

(ii)If λ1 + λ2 ̸= 0, from (S40), we have

q12 =
λ1 − λ2

λ1 + λ2
d12, (S49)

and

Q =

(
d11

2λ1
λ1+λ2

d12
2λ2

λ1+λ2
d12 d22

)
,

D + Q =

(
d11

2λ1
λ1+λ2

d12
2λ2

λ1+λ2
d12 d22

)
,

[D + Q]−1 =
(λ1 + λ2)

2

d11d22(λ1 + λ2)
2 − 4λ1λ2d2

12

(
d22 − 2λ1

λ1+λ2
d12

− 2λ2
λ1+λ2

d12 d11

)
,

S =
[D + Q]−1 +

{
[D + Q]−1

}τ

2

=
(λ1 + λ2)

2

d11d22(λ1 + λ2)
2 − 4λ1λ2d2

12

(
d22 −d12
−d12 d11

)
,

U = − (λ1 + λ2)
2

(λ1 + λ2)
2d11d22 − 4λ1λ2d2

12

(
λ1d22 − 2λ1λ2

λ1+λ2
d12

− 2λ1λ2
λ1+λ2

d12 λ2d11

)
,

(S50)

here, d11, d12, d22 satisfy d11d22 − d2
12 > 0.

By (S5) and(S50), it can derive the Lyapunov function

ϕ(x) = −
(λ1 + λ2)

2(d22λ1x2
1 −

4λ1λ2
λ1+λ2

d12x1x2 + d11λ2x2
2)

2[d11d22(λ1 + λ2)
2 − 4λ1λ2d2

12]
. (S51)
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Then, it can verify that the Lyapunov function does not increase along the trajectory

dϕ

dt
=

∂ϕ

∂x1
ẋ1 +

∂ϕ

∂x2
ẋ2

= −
(λ1 + λ2)

2(d22λ2
1x2

1 − 2λ1λ2d12x1x2 + d11λ2
2x2

2)

(λ1 + λ2)
2d11d22 − 4λ1λ2d2

12

≤ 0,

(S52)

which shows that dϕ
dt is less than zero except for the equilibrium point.

And the corresponding divergence div f (x) and dissipative power HP(x) are derived

HP(x) = ẋτSẋ

=
(λ1 + λ2)

2(d22λ2
1x2

1 − 2d12λ1λ2x1x2 + d11λ2
2x2

2)

d11d22(λ1 + λ2)
2 − 4λ1λ2d2

12

(S53)

≥ 0, (S54)

div f (x) = trace(F)

= λ1 + λ2

̸= 0. (S55)

By (S52) and (S53), we obtain
dϕ

dt
= −Hp(x). (S56)

In this case, HP(x) ≥ 0 in (S54) indicates that system (S1) is dissipative and the
dissipation is equal to zero at the equilibrium point. The div f (x) ̸= 0 in (S55) implies
div f (x) > 0 or div f (x) < 0. When div f (x) < 0, the results are always consistent by
using the divergence and dissipative power to determine the dissipation of a planar
linear system; When div f (x) > 0, the divergence can’t judge the dissipation of the
system, while dissipative power can judge the system being dissipative. Therefore, it
is more advantageous to use the dissipative power than divergence to determine the
dissipation of the system.

(2)When F =

(
λ1 0
0 λ1

)
, the (S6) can be rewritten as

{
2λ1q12 = 0,
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0.
(S57)
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(i)If λ1 ̸= 0, then q12 = 0, and

Q = 0, 0 is a zreo matrix,

D + Q =

(
d11 d12
d12 d22

)
,

[D + Q]−1 =
1

d11d22 − d2
12

(
d22 −d12
−d12 d11

)
,

S =
1

d11d22 − d2
12

(
d22 −d12
−d12 d11

)
,

U = − [D + Q]−1F

= − λ1

d11d22 − d2
12

(
d22 −d12
−d12 d11

)
,

(S58)

here, d11, d12, d22 satisfy d11d22 − d2
12 > 0.

By (S58) and (S5), the Lyapunov function can be obtained

ϕ(x) = −
λ1(d22x2

1 − 2d12x1x2 + d11x2
2)

2(d11d22 − d2
12)

. (S59)

Then, it can verify that the Lyapunov function does not increase along the trajectory

dϕ

dt
=

∂ϕ

∂x1
ẋ1 +

∂ϕ

∂x2
ẋ2

= −
λ2

1(d22x2
1 − 2d12x1x2 + d11x2

2)

d11d22 − d2
12

≤ 0,

(S60)

which shows that dϕ
dt is less than zero except for the equilibrium point.

The corresponding divergence div f (x) and dissipative power HP(x) are derived

HP(x) = ẋτSẋ

=
λ2

1(d22x2
1 − 2d12x1x2 + d11x2

2)

d11d22 − d2
12

(S61)

≥ 0. (S62)

div f (x) = trace(F)

= 2λ1

̸= 0. (S63)

By (S60) and (S61), we obtain
dϕ

dt
= −Hp(x). (S64)

10



Supplementary Material

In this case, HP(x) ≥ 0 in (S62) indicates that system (S1) is dissipative and the
dissipation is equal to zero at the equilibrium point. The div f (x) ̸= 0 in (S63) implies
div f (x) > 0 or div f (x) < 0. When div f (x) < 0, the results are always consistent by
using the divergence and dissipative power to determine the dissipation of a planar
linear system; When div f (x) > 0, the divergence can’t judge the dissipation of the
system, while dissipative power can judge the system being dissipative. Therefore, it
is more advantageous to use the dissipative power than divergence to determine the
dissipation of the system.

(ii)If λ1 = 0, the system is conservative. It’s easy to know

HP(x) = ẋτSẋ

≡ 0, (S65)

div f (x) = trace(F)

= 2λ1

≡ 0. (S66)

And, we obtain
dϕ

dt
= −Hp(x). (S67)

So they are consistent in representing the system being conservative by div f (x) ≡ 0 and
HP(x) ≡ 0.

(3)When F =

(
λ1 0
1 λ1

)
, the (S6) can be rewritten as

{
2λ1q12 = −d11,
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0.
(S68)

(i)If λ1 ̸= 0, then

q12 = − d11

2λ1
, (S69)

and

Q =
−d11

2λ1

(
0 1
−1 0

)
,

D + Q =

(
d11 d12 − d11

2λ1

d12 +
d11
2λ1

d22

)
,

[D + Q]−1 = m1

(
d22 −d12 +

d11
2λ1

−d12 − d11
2λ1

d11

)
,

S = m1

(
d22 −d12
−d12 d11

)
,

U = − m1

(
d22λ1 − d12 +

d11
2λ1

−d12λ1 +
d11
2

−d12λ1 +
d11
2 d11λ1

)
,

(S70)
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in which m1 =
4λ2

1
4λ2

1d11d22−4λ2
1d2

12+d2
11

, and d11, d12, d22 satisfy d11d22 − d2
12 > 0.

By (S70) and (S5), the Lyapunov function can be obtained

ϕ(x) = −
2λ2

1

[
(d22λ1 − d12 +

d11
2λ1

)x2
1 + 2(−d12λ1 +

d11
2 )x1x2 + d11λ1x2

2

]
4λ2

1d11d22 − 4λ2
1d2

12 + d2
11

, (S71)

Then, it gets

dϕ

dt
= −

4λ2
1
[
(d22λ2

1 − 2d12λ1 + d11)x2
1 + 2(d11 − d12λ1)λ1x1x2 + d11λ2

1x2
2
]

4λ2
1d11d22 − 4λ2

1d2
12 + d2

11
, (S72)

the discriminant of g1(x1, x2)
∆
= (d22λ2

1 − 2d12λ1 + d11)x2
1 + 2(−d12λ1 + d11)λ1x1x2 +

d11λ2
1x2

2 = 0 about x1 is

∆ = 4(−d12λ1 + d11)
2λ2

1 − 4(d22λ2
1 − 2d12λ1 + d11)d11λ2

1

= 4λ4
1

[
d2

12 − d11d22

]
≤ 0,

(S73)

it has g1(x1, x2) ≥ 0, then
dϕ

dt
≤ 0, (S74)

which shows that dϕ
dt is less than zero except for the equilibrium point.

The corresponding divergence div f (x) and dissipative power HP are derived

HP(x) =
4λ2

1g(x1, x2)

4λ2
1d11d22 − 4λ2

1d2
12 + d2

11
(S75)

≥ 0, (S76)

div f (x) = trace(F)

= 2λ1

̸= 0. (S77)

By (S72) and (S75), we obtain
dϕ

dt
= −Hp(x). (S78)

In this case, HP(x) ≥ 0 in (S76) indicates that system (S1) is dissipative and the
dissipation is equal to zero at the equilibrium point. The div f (x) ̸= 0 in (S77) implies
div f (x) > 0 or div f (x) < 0. When div f (x) < 0, the results are always consistent by
using the divergence and dissipative power to determine the dissipation of a planar
linear system; When div f (x) > 0, the divergence can’t judge the dissipation of the
system, while dissipative power can judge the system being dissipative. Therefore, it
is more advantageous to use the dissipative power than divergence to determine the
dissipation of the system.
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(ii)If λ1 = 0, from (S68), we have d11 = d12 = 0, q12 is an arbitrary nonzero real number.
And

D =

(
0 0
0 d22

)
,

Q =

(
0 q12

−q12 0

)
,

D + Q =

(
0 q12

−q12 d22

)
,

[D + Q]−1 =
1

q2
12

(
d22 −q12
q12 0

)
,

S =
1

q2
12

(
d22 0
0 0

)
,

U = − [D + Q]−1F

=
1

q12

(
1 0
0 0

)
,

(S79)

in which q12 ̸= 0 and d22 ≥ 0.

By (S79) and (S5), the Lyapunov function can be obtained

ϕ(x) =
1

2q12
x2

1, (S80)

then, it can verify that the Lyapunov function does not increase along the trajectory

dϕ

dt
=

∂ϕ

∂x1
ẋ1 +

∂ϕ

∂x2
ẋ2

=
λ1x2

1
q12

≡ 0.

(S81)

Then, the corresponding divergence div f (x) and dissipative power HP(x) are derived

HP(x) = ẋτSẋ

= xτFτSFx

=
1

q2
12

(
x1 x2

) ( 0 1
0 0

)(
d22 0
0 0

)(
0 0
1 0

)(
x1
x2

)
≡ 0, (S82)

div f (x) = trace(F)

= 2λ1

≡ 0. (S83)
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By (S81) and (S82), we obtain
dϕ

dt
= −Hp(x). (S84)

In this case, they are consistent in representing the system being conservative by
div f (x) ≡ 0 and HP(x) ≡ 0.

(4)When F =

(
α β
−β α

)
, the (S6) can be rewritten as

{
2αq12 = β(d11 + d22),
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0, β ̸= 0.
(S85)

(i)If α ̸= 0, we have

Q12 =
β(d11 + d22)

2α
, (S86)

and

Q =
β(d11 + d22)

2α

(
0 1
−1 0

)
,

D + Q =

(
d11 d12 +

β(d11+d22)
2α

d12 − β(d11+d22)
2α d22

)
,

[D + Q]−1 = m2

(
d22 −d12 − β(d11+d22)

2α

−d12 +
β(d11+d22)

2α d11

)
,

S = m2

(
d22 −d12
−d12 d11

)
,

U = − m2

(
d22α + d12β + β2(d11+d22)

2α −d12α + β(d22−d11)
2

−d12α + β(d22−d11)
2 d11α − d12β + β2(d11+d22)

2α

)
,

(S87)

in which m2 = 4α2

4α2(d11d22−d2
12)+β2(d11+d22)

2 , and d11, d12, d22 satisfy d11d22 − d2
12 ≥ 0.

By (S87) and (S5), the Lyapunov function can be obtained

ϕ(x) =
−2α2g2(x1, x2)

4α2(d11d22 − d2
12) + β2(d11 + d22)

2 , (S88)

in which g2(x1, x2) = [d22α + d12β + β2(d11+d22)
2α ]x2

1 + 2[−d12α + β(d22−d11)
2 ]x1x2 +[d11α −

d12β + β2(d11+d22)
2α ]x2

2. Then, it gets

dϕ

dt
=

−4α2g3(x1, x2)

4α2(d11d22 − d2
12) + β2(d11 + d22)

2 , (S89)

in which g3(x1, x2) = (d22α2 + 2d12αβ + d11β2)x2
1 + 2[d12(β2 − α2) + αβ(d22 − d11)]x1x2

+(d11α2 + d22β2 − 2d12αβ)x2
2. The discriminant of equation g3(x1, x2) = 0 corresponding
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to the formula in (S89) is

∆ = 4[d12(β2 − α2) + αβ(d22 − d11)]
2

− (d22α2 + 2d12αβ + d11β2)(d11α2 + d22β2 − 2d12αβ)

= 4(α2 + β2)2(d2
12 − d11d22)

≤ 0,

(S90)

then, it can verify that the Lyapunov function does not increase along the trajectory

dϕ

dt
=

∂ϕ

∂x1
ẋ1 +

∂ϕ

∂x2
ẋ2

≤ 0,
(S91)

which shows that dϕ
dt is less than zero except for the equilibrium point.

Then, the corresponding divergence div f (x) and dissipative powerHP are derived

HP(x) =
4α2g3(x1, x2)

4α2(d11d22 − d2
12) + β2(d11 + d22)

2 (S92)

≥ 0, (S93)

div f (x) = trace(F)

= 2α

̸= 0. (S94)

By (S89) and (S92), we obtain
dϕ

dt
= −Hp(x). (S95)

In this case, HP(x) ≥ 0 in (S93) indicates that system (S1) is dissipative and the
dissipation is equal to zero at the equilibrium point. The div f (x) ̸= 0 in (S94) implies
div f (x) > 0 or div f (x) < 0. When div f (x) < 0, the results are always consistent by
using the divergence and dissipative power to determine the dissipation of a planar
linear system; When div f (x) > 0, the divergence can’t judge the dissipation of the
system, while dissipative power can judge the system being dissipative. Therefore, it
is more advantageous to use the dissipative power than divergence to determine the
dissipation of the system.
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(ii)If α = 0, we have d11 = d22 = d12 = 0, q12 is an arbitrary nonzero real number. Then, we
can obtain

Q =

(
0 q12

−q12 0

)
,

D = 0

D + Q =

(
0 q12

−q12 0

)
,

[D + Q]−1 =
1

q2
12

(
0 −q12

q12 0

)
,

S =
[D + Q]−1 +

{
[D + Q]−1

}τ

2
≡ 0

U = − [D + Q]−1F

= − β

q12

(
1 0
0 1

)
.

(S96)

By (S96) and (S5), the Lyapunov function can be obtained

ϕ(x) = − β

2q12
(x2

1 + x2
2), (S97)

it can verify that the Lyapunov function does not increase along trajectory

dϕ

dt
=

∂ϕ

∂x1
ẋ1 +

∂ϕ

∂x2
ẋ2

= − β

q12
(x1ẋ1 + x2ẋ2)

= − β

q12
[x1βx2 + x2(−βx1)]

≡ 0.

(S98)

Then, the corresponding divergence div f (x) and dissipative power HP are derived

HP(x) = ẋτSẋ

≡ 0. (S99)

div f (x) = trace(F)

≡ 0. (S100)

By (S98) and (S99), we obtain
dϕ

dt
= −Hp(x). (S101)
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In this case, they are consistent in representing the system being conservative by
div f (x) ≡ 0 and HP(x) ≡ 0.
For the planar linear system with four Jordan’s normal forms, all the results are
summarized into the Table S2.

Table S2. The Hp and div f of planar linear system with four Jordan’s normal forms as coefficient matrix

div f
HP Jordan’s normal norm

(
λ1 0
0 λ2

) (
λ1 0
0 λ1

) (
λ1 0
1 λ1

) (
α β
−β α

)
div f (x) = 0

HP ≥ 0 contains two case:
HP ≡ 0 HP ≡ 0 HP ≡ 0HP ≥ 0(only x1 = x2 = 0,HP = 0)

HP ≡ 0

div f (x) ̸= 0(div f (x) > 0 and div f (x) < 0) HP ≥ 0 HP ≥ 0 HP ≥ 0 HP ≥ 0
(only x1 = x2 = 0,HP = 0) (only x1 = x2 = 0,HP = 0) (only x1 = x2 = 0,HP = 0) (only x1 = x2 = 0,HP = 0)
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