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1 Details of the training phase and hyper-parameter values for the CNN model. 

We performed an extensive computational analysis for comparing our DL model against ML 

baselines. We remark that, for a fair comparison, machine learning models have been trained after 

appropriate data preprocessing and model tuning (e.g. reducing the dimensionality via PCA, using 

preprocessed and normalized data, grid-searching the main hyperparameters).  

We report quantitative results for the ML baseline in Suppl.Tab.1. To evaluate both ML and DL 

models at patient level, we applied a rigorous evaluation scheme, namely the Leave-One-Patient-Out 

CrossValidation (LOPOCV). We recall that Leave-One-Patient-Out Cross-Validation is a robust and 

stable procedure where each test-fold is composed of the entire set of spectra from a single patient 

(and the training-fold is composed of the spectra of the remaining patients). In limited data settings, 

like ours, this procedure gives an estimate of the model performance that is more accurate with 

respect to regular validation strategies (e.g. hold-out methods), avoiding possible classification biases 

given by the choice of an arbitrary set of patients’ spectra as a test set.  

 

The detailed results of the DL hyper parameter search, including the final values and the search 

spaces, are reported in Suppl.Tab.2. The CNN model is trained for a maximum of 200 epochs, using 

early stopping: therefore, for each fold of the LOPOCV, the training is stopped after 10 epochs of 

validation accuracy stagnation, to avoid overfitting. We exploited the Adam optimizer, scheduling its 

learning rate with a ReduceLearningRateOnPlateau strategy, starting from a learning rate value lr = 

0.001 and systematically halving it once the validation metrics did not improve for 10 consecutive 

epochs. To boost the robustness and the generalization power of the data-hungry DL model, we 

generated new synthetic spectra by means of data augmentation procedure (Carlomagno, C. et al., 
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2021). Indeed, it is possible to simulate the spectral imperfections and variations characteristics of the 

RS acquisition process by injecting a small contribution (equal ~0.1 σtrain, where σtrain is the 

intensity standard deviation of the training set) of Gaussian noise to the original spectra at random 

wavenumbers.  In addition to direct noise injection, other augmentation components are applied, 

namely the stochastic modulation of the spectral offset and slope. The main effects include: our 

procedure slightly shifts the intensities, making the system invariant to weak translation along with 

the intensity axis; it reshapes the Raman peaks according to a certain multiplicative factor (1 ± 0.1 

σtrain), and it alters the spectrum slope, from a local (close to a peak) or global perspective (slope 

was adjusted with a random multiplicative factor uniformly distributed in [0.95, 1.05]). In each 

augmentation step, the values of the additive/multiplicative parameters have been carefully chosen 

after an extensive exploration, having in mind that their variation range should be small enough to 

make sure that the generated spectra are still realistically similar to their original version, but, at the 

same time, large enough not to produce almost identical and therefore useless new examples. The 

data augmentation has been applied according to the optimized “data augmentation factor”, but only 

to the training set, never to the test set. Since the performances have been measured in a LOPOCV, 

the data augmentation has been performed online. Notice that while applying LOPOCV, each 

training fold is augmented independently: in this way, we ensure no biases nor data leakage is 

introduced by the data augmentation procedure. 
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3 Supplementary Tables 

Model Accuracy Precision Recall F-Measure 

SVM 0.851 0.825 (±0.12) 0.830 (±0.08) 0.821 (±0.08) 

RF 0.836 0.824 (±0.06) 0.773 (±0.15) 0.791 (±0.08) 

FCNN 0.851 0.834 (±0.04) 0.81 (±0.08) 0.82 (±0.04) 

Supplementary Table 1. Accuracy, Precision, Recall and F-measure of the ML baseline models at 

the patients’ level. 

 

Hyper-parameters Search Space Final Value 

CNN1 filters int. [l = 5, h = 150] 60 

CNN1 filter size int. [l = 5, h = 100] 60 

CNN1 strides int. [l = 1, h = 5] 1 

MaxPool1 size int. [l = 2, h = 10] 5 

MaxPool1 strides int. [l = 2, h = 6] 5 
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CNN2 filters int. [l = 5, h = 120] 70 

CNN2 filter size int. [l = 5, h = 30] 11 

CNN2 strides int. [l = 1, h = 5] 4 

MaxPool2 size int. [l = 2, h = 10] 4 

MaxPool2 strides int. [l = 2, h = 6] 4 

CNN3 filters int. [l = 5, h = 150] 93 

CNN3 filter size int. [l = 5, h = 20] 45 

CNN3 strides int. [l = 1, h = 5] 1 

MaxPool3 size int. [l = 1, h = 10] 2 

MaxPool3 strides int. [l = 1, h = 4] 2 

Dropout rate (after flattening) discrete unif. [l = 0.1, h = 0.95, q 

=0.05] 

0.1 

Dense units 1 (first dense 

layer) 

int. [l = 32, h = 1024] 360 

Dropout1 rate discrete unif. [l = 0.1, h = 0.95, q 

=0.05] 

0.5 

Dense units 2 int. [l = 32, h = 1024] 224 

Dropout2 rate discrete unif. [l = 0.1, h = 0.95, q 

=0.05] 

0.2 

Dense units 3 int. [l = 32, h = 1024] 122 

Dropout3 rate discrete unif. [l = 0.1, h = 0.95, q 

=0.05] 

0.1 

Batch size binned int. [l = 2, h = 512] 64 

Augmentation factor int. [l = 1, h = 100] 10 

Supplementary Table 2. Summary of the optimized parameters for the final neural network hyper-

parameters optimization phase with their relative search space and the final values obtained: int. 

refers to integer search space while logunif. and discrete unif. respectively to log-uniform and 

discrete uniform search space.  

 

 


