Supporting Information

For

In Situ Generated Novel ¹H MRI Reporters for β-Galactosidase Activity Detection and Visualization in Living Tumor Cells

- Shuo Gao,¹ Lei Zhao,^{1†} Zhiqiang Fan,^{1†} Vikram D. Kodibagkar,² Li Liu,³ Hanqin Wang,¹ Hong Xu,¹ Mingli Tu,¹ Bifu Hu,¹ Chuanbin Cao,¹ Zhenjian Zhang,¹ Jian-Xin Yu,^{1,4*}
- ¹ Center of Translational Medicine, 5th School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, 8 Wenhua Park Road, Suizhou, Hubei 441300, China
- ² School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
- ³ Department of Radiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA
- ⁴ Biomedical Research Institute, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei 442000, China

[†] Equal Contributions.

CONTENTS:

1. Supporting figures

- (1) Figure S1, The numbering of structures AZ-M1 and AZ-1.
- (2) Figure S2, The numbering of structures AZ-M2 and AZ-2.
- (3) Figure S3, The formation of molecular tweezer complex $AZ-2/Fe^{3+}$.
- 2. Fe³⁺-alizarin complex preparation.
- 3. Molecular characterization of AZ-M1, AZ-M2, AZ-1 and AZ-2.
- 4. Figures S1-S13, NMR spectra of AZ-M1, AZ-M2, AZ-1 and AZ-2.

Figure S1. The numbering of structures AZ-M1 and AZ-1.

Figure S2. The numbering of structures AZ-M2 and AZ-2.

Figure S3. The formation of molecular tweezer complex **AZ-2/Fe**³⁺ (Modeling was calculated from the computed minimized energy conformation using Chem3D 8.0, MM2 as the force field).

Fe³⁺-alizarin complex preparation. To a solution of alizarin (721 mg, 3.0 mmol) and Et₃N (323 mg, 3.2 mmol) in anhydrous MeOH (80 mL) was dropped a solution of Fe(ClO₄)₃·6H₂O (462 mg, 1.0 mmol) in anhydrous MeOH (50 mL) with stirring at gently refluxing under N₂ for 30 min. Upon cooling, a fine brown precipitate was obtained, which was filtered off, washed with EtOH then Et₂O, and dried in the vacuum.

Fe³⁺-Alizarin Complex, [Fe(Alizarin-H)₃]·2H₂O (765 mg) as brown powders. Anal. Calcd. for C₄₂H₂₅FeO₁₄ (%): C, 62.32, H, 3.11; Found: C, 62.27, H, 3.06.

Alizarin 2-O-2', 3', 4', 6'-Tetra-O-Acetyl-β-*D*-Galactopyranoside AZ-M1 (1.34 g, 78%) as brown syrup, R_f 0.62 (3:2 cyclohexane-EtOAc). $\delta_{\rm H}$ (CDCl₃): 12.81 (1H, s, 1-OH, exchangeable with D₂O), 7.48 (1H, d, $J_{3,4} = 8.34$ Hz, Ar-H₃), 7.78 (1H, d, Ar-H₄), 8.29 (1H, dd, $J_{5,6} = 6.84$ Hz, $J_{5,7} = 1.20$ Hz, Ar-H₅), 7.81 (1H, dd, $J_{6,7} = 1.56$ Hz, Ar-H₆), 7.82 (1H, dd, $J_{7,8} =$ 6.96 Hz, Ar-H₇), 8.28 (1H, dd, $J_{6,8} = 2.04$ Hz, Ar-H₈), 5.15 (1H, d, $J_{1',2'} = 8.10$ Hz, H-1'), 5.60 (1H, dd, $J_{2',3'} = 10.44$ Hz, H-2'), 5.17 (1H, dd, $J_{3',4'} = 3.42$ Hz, H-3'), 5.49 (1H, d, $J_{4',5'} = 3.06$ Hz, H-4'), 4.10 (1H, t, $J_{5',6a'} = J_{5',6b'} = 6.60$ Hz, H-5'), 4.25 (1H, dd, $J_{6a',6b'} = 11.37$ Hz, H-6a'), 4.20 (1H, dd, H-6b'), 2.21, 2.15, 2.07, 2.04 (12 H, 4 s, 4 × CH₃CO) ppm. $\delta_{\rm C}$ (CDCl₃): 150.38 (C-1), 153.85 (C-2), 119.98 (C-3), 124.50 (C-4), 127.46 (C-5), 134.92 (C-6), 133.70 (C-7), 133.17 (C-8), 181.48 (C-9), 188.90 (C-10), 117.06 (C-11), 126.97 (C-12), 128.44 (C-13), 134.07 (C-14), 100.46 (C-1'), 68.36 (C-2'), 70.53 (C-3'), 66.84 (C-4'), 71.40 (C-5'), 61.37 (C-6'), 170.33, 170.21, 170.12, 169.62 (4 × CH₃CO), 21.81, 20.67, 20.66, 20.60 (4 × CH₃CO) ppm.

HRMS: [M+H]⁺, C₂₈H₂₇O₁₃, Calcd: 571.5062, Found: 571.5037; [M+Na]⁺, C₂₈H₂₆O₁₃Na, Calcd: 593.4880, Found: 593.4853.

Alizarin 1,2-Di-O-2', 3', 4', 6'-Tetra-O-Acetyl-β-D-Galactopyranoside AZ-M2 (1.68 g, 62%) as brown syrup, R_f 0.51 (1:2 cyclohexane-EtOAc). $\delta_{\rm H}$ (CDCl₃): 7.47 (1H, m, Ar-H₃), 7.71 (1H, m, Ar-H₄), 8.16 (2H, m, Ar-H_{5,8}), 8.06 (2H, m, Ar-H_{6,7}), 5.24 (1H, d, $J_{1',2'}$ = 7.58 Hz, H-1'), 5.26 (1H, d, $J_{1'',2''}$ = 7.65 Hz, H-1''), 5.49 (1H, dd, $J_{2',3'}$ = 9.72 Hz, H-2'), 5.59 (1H, dd, $J_{2'',3''}$ = 10.08 Hz, H-2''), 5.08 (1H, m, H-3'), 5.12 (1H, m, H-3''), 5.34 (1H, m, H-4'), 5.43 (1H, m, H-4''), 3.92 (1H, m, H-5'), 4.00 (1H, m, H-5''), 4.03 (2H, m, H-6'), 4.16 (2H, m, H-6''), 2.17 - 1.96 (24 H, m, 8 × CH₃CO) ppm. $\delta_{\rm C}$ (CDCl₃): 145.02 (C-1), 155.20 (C-2), 122.64 (C-3), 124.97 (C-4), 127.30 (C-5), 133.64 (C-6), 132.38 (C-7), 127.60 (C-8), 181.51 (C-9), 182.13 (C-10), 126.62 (C-11), 130.17 (C-12), 134.18 (C-13), 134.91 (C-14), 99.66 (C-1'), 100.44 (C-1''), 68.66 (C-2'), 69.95 (C-2''), 70.47 (C-3'), 71.15 (C-3''), 66.75 (C-4'), 67.00 (C-4''), 71.35 (C-5'), 71.50 (C-5''), 60.99 (C-6') 61.40 (C-6''), 171.05, 170.43, 170.18, 170.14, 170.11, 169.97, 169.57, 169.36 (8 × CH₃CO), 20.99, 20.86, 20.78, 20.64, 20.60, 20.59, 20.54, 20.43 (8 × CH₃CO) ppm.

HRMS: [M]⁺, C₄₂H₄₄O₂₂, Calcd: 900.7856, Found: 900.7837; [M+Na]⁺, C₄₂H₄₄O₂₂Na, Calcd: 923.7753, Found: 923.7732.

Alizarin 2-*O*-β-*D*-Galactopyranoside AZ-1 (872 mg, 91%) as brown foam solid, R_f 0.48 (1:4 MeOH-EtOAc). δ_{H} (DMSO-*d*₆): 15.26 (1H, s, 1-OH, exchangeable with D₂O), 8.45 - 6.73 (6H, m, Ar-H_{3,4,5,6,7,8}), 4.97 (1H, d, *J*_{1',2'} = 7.74 Hz, H-1'), 3.77 - 3.50 (6H, m, H-2',3',4',5',6'), 5.10 - 4.30 (4H, br, HO-2', 3', 4', 6', exchangeable with D₂O) ppm. δ_{C} (DMSO-*d*₆): 161.02 (C-1), 167.69 (C-2), 116.65 (C-3), 117.26 (C-4), 125.28 (C-5), 155.42 (C-6), 133.36 (C-7), 132.67 (C-8), 171.75 (C-9), 180.26 (C-10), 110.65 (C-11), 125.04 (C-12), 127.25 (C-13), 133.69 (C-14), 100.79 (C-1'), 70.32 (C-2'), 73.49 (C-3'), 68.23 (C-4'), 75.82 (C-5'), 60.51 (C-6') ppm.

HRMS: [M+H]⁺, C₂₀H₁₉O₉, Calcd: 403.3595, Found: 403.3559; [M+Na]⁺, C₂₀H₁₈O₉Na, Calcd: 425.3413, Found: 425.3380.

Alizarin 1,2-Di-O-β-D-Galactopyranoside AZ-2 (765 mg, 94%) as brown powder, R_f 0.42 (1:2 MeOH-EtOAc). δ_{H} (DMSO- d_{6}): 7.65 (1H, d, $J_{3,4} = 8.76$ Hz, Ar-H₃), 7.97 (1H, d, Ar-H₄), 8.10 (1H, d, $J_{5,6} = 7.38$ Hz, Ar-H₅), 7.87 (1H, t, $J_{6,7} = 7.38$ Hz, Ar-H₆), 7.83 (1H, t, $J_{7,8} = 7.32$ Hz, Ar-H₇), 8.08 (1H, d, Ar-H₈), 5.02 (1H, d, $J_{1',2'} = 7.62$ Hz, H-1'), 5.08 (1H, d, $J_{1'',2''} = 7.62$ Hz, H-1''), 3.72 (1H, dd, $J_{2',3''} = 8.16$ Hz, H-2'), 3.79 (1H, dd, $J_{2'',3''} = 8.52$ Hz, H-2''), 3.38 (1H, dd, $J_{3',4''} = 5.94$ Hz, H-3'), 3.60 (1H, dd, $J_{3'',4''} = 5.52$ Hz, H-3''), 3.69 (1H, m, H-4'), 3.77 (1H, m, H-4''), 3.29 (2H, m, H-5', H-5''), 3.49 (4H, m, H-6', H-6''), 4.92 - 4.40 (8H, br, HO-2', 2'', 3', 3'', 4', 4'', 6', 6'', exchangeable with D₂O) ppm. δ_{C} (DMSO- d_{6}): 145.14 (C-1), 156.03 (C-2), 120.47 (C-3), 124.27 (C-4), 126.73 (C-5), 132.25 (C-6), 133.80 (C-7), 127.70 (C-8), 181.69 (C-9), 181.85 (C-10), 126.13 (C-11), 127.76 (C-12), 134.36 (C-13), 135.08 (C-14), 101.50 (C-1'),103.80 (C-1''), 70.53 (C-2'), 71.74 (C-2''), 72.89 (C-3'), 73.27 (C-3''), 67.96 (C-4'), 68.18 (C-4''), 75.64 (C-5'), 75.97 (C-5''), 60.07 (C-6') ppm.

HRMS: [M+H]⁺, C₂₆H₂₉O₁₄, Calcd: 565.5001, Found: 565.4968; [M+Na]⁺, C₂₆H₂₈O₁₄Na, Calcd: 587.4819, Found: 587.4791.

5

Figure S5. ¹³C NMR spectrum of **AZ-M1**.

Figure S7. NOESY spectrum of AZ-M1.

Figure S8. ¹H NMR spectrum of AZ-M2.

Figure S9. ¹³C NMR spectrum of **AZ-M2**.

Figure S10. ¹H NMR spectrum of AZ-1.

Figure S11. ¹³C NMR spectrum of AZ-1.

