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The null hypothesis states that several cell division cycles and SHM take place before a single

selection round generates the output B cells (memory B cells and plasma cells). This means that

all mutational patterns in the output mutant B cells must have been previously generated either

randomly or with the only biases intrinsic to the SHM machinery. The aim in this appendix is to

determine the probability Pshare that in two independent V sequence samples, A and B, with sizes

nA and nB, respectively, at least one recurrent (common) mutation pattern of size k is present. The

assumptions we make here with respect to the dynamics of dividing B cells undergoing affinity

maturation are: 1) there is a single selection step (null hypothesis), 2) sampled B cells have under-

gone g division cycles since onset of SHM. With respect to the mutation probability, we assume

it is uniform, constant in time, and equal and independent in both daughter cells, so that any nu-

cleotide can mutate to any of the other three different nucleotides with probability p. Thus, 3p

is the probability of mutating at a given base pair per cell cycle (for simplicity, we consider the

probabilities of transversions and transitions to be equal), and q = 1 − 3p the probability of not

mutating at a given base pair per cell cycle.

Probability of finding multiple mutations after g division cycles

Let consider V gene sequences have L base pairs. In the first cell division the probability of a cell

to get m mutations in a V gene is:

(
L
m

)
(1 − q)m qL−m. (1)

And the probability that a cell acquires m mutations in a V gene after g division cycles, is given

by the following expression:

Pg(L, m) =

L∑
s=0

Pg−1(L, s)
s∑

i=0

(
L − s
m − i

)
(1 − q)m−i qL−s−(m−i)

(
s
i

)
(1 − p)i ps−i

= (1 − q)m qL−m
m∑

i=0

L−m+i∑
s=i

Pg−1(L, s)
(
L − s
m − i

) (
s
i

) (
1 − p
1 − q

)i (
p
q

)s−i

. (2)
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This recursive formula takes into account the possibility of mutation of a mutated nucleotide to

the original nucleotide (reversion) or to a different one and corresponds to the case investigated by

Jukes and Cantor [1]. We can use induction to obtain an explicit expression. Let us assume that,

Pg(L, m) =

(
L
m

) (
(1 − q) Ag

)m (
1 − (1 − q) Ag

)L−m
, (3)

where Ag =
∑g−1

i=0 (q − p)i, and consider the equality:

(
L
s

) (
s
i

) (
L − s
m − i

)
=

(
L
m

) (
m
i

) (
L − m
s − i

)
. (4)

Then,

Pg+1(L, m) = (1 − q)m qL−m
m∑

i=0

L−m+i∑
s=i

Pg(L, s)
(
L − s
m − i

) (
s
i

) (
1 − p
1 − q

)i (
p
q

)s−i

= (1 − q)m qL−m
m∑

i=0

L−m+i∑
s=i

(
L
s

) (
(1 − q) Ag

)s (
1 − (1 − q) Ag

)L−s
(
L − s
m − i

) (
s
i

) (
1 − p
1 − q

)i (
p
q

)s−i

= (1 − q)m qL−m

(
L
m

) m∑
i=0

(
m
i

) (
1 − p
1 − q

)i (
(1 − q) Ag

1 − (1 − q) Ag

)i L−m+i∑
s=i

(
(1 − q) Ag

1 − (1 − q) Ag

)s−i (
L − m
s − i

) (
p
q

)s−i

=

(
L
m

)
(1 − q)m qL−m

(
1 − (1 − q) Ag

)L
1 +

(1 − p) Ai
g

1 − (1 − q) Ag

m
1 +

p(1 − q) Ag

q
(
1 − (1 − q) Ag

)
L−m

=

(
L
m

) (
(1 − q) Ag+1

)m (
1 − (1 − q) Ag+1

)L−m
. (5)

Since P0(L, 0) = 1 and P0(L, m) = 0, for m > 0, then Eqn. 3 is correct. Moreover, given that

Ag =
∑g−1

i=0 (q − p)i =
1−(q−p)g

1−(q−p) , it follows that the probability that a random sequence has exactly m

mutations is,

Pg(L, m) =

(
L
m

) (1 − q)

(
1 − (q − p)g

)
1 − (q − p)


m 1 − (1 − q)

(
1 − (q − p)g

)
1 − (q − p)


L−m

, (6)
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Also, the probability that a given k-plet is present in a random sequence with exactly m (≥ k)

mutations is given by,

Pk1(L, m) = Pg(L, m)

(
m
k

)
3k

(
L
k

) =

(1 − q)

(
1 − (q − p)g

)
1 − (q − p)


m 1 − (1 − q)

(
1 − (q − p)g

)
1 − (q − p)


L−m (

L
m

) (
m
k

)
3k

(
L
k

)
=

(1 − q)

(
1 − (q − p)g

)
1 − (q − p)


m 1 − (1 − q)

(
1 − (q − p)g

)
1 − (q − p)


L−m

1
3k

(
L − k
m − k

)
, (7)

where
(

m
k

)
is the number of different k-plets that can be formed in a sequence with m (≥ k) muta-

tions, and NLk =
(m

k)
3k(L

k)
is the probability of a given k-plet within a random sequence with m (≥ k)

mutations.

Finally, the probability of a given k-plet in a random sequence is:

PL,k =

L∑
m=0

Pk1(L, m). (8)

Tipically, researchers have sampled GC B-cell H or L sequences containing a given VH or VL

gene or any V gene of a given family, independently of DH JH or JL sequences. Let consider now

two independent sequence sets of those, A and B. The probability that a random sequence from a

sample A has not any of the k-plets in nB sequences in another sample B is:

(1 − PL,k)
T diff

nB , (9)

where T diff
nB

is the total number of different k-plets in the nB sequences.

Therefore, the probability that the nA sequences from sample A has not any of the k-plets in the nB

sequences of sample B is:

(
(1 − PL,k)

T diff
nB

)nA

= (1 − PL,k)
nA×T diff

nB . (10)

And the probability that the nA sequences in sample A share at least one of the k-plets in the nB

sequences of sample B is:
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Pshare = 1 − (1 − PL,k)
nA×T diff

nB . (11)

In order to estimate T diff
nB , consider two sequences, one with m1 mutations (and hence, r1 =

(
m1
k

)
k-plets) and the other with m2 mutations (and hence, r2 =

(
m2
k

)
k-plets). Then the probability that

the two sequences share i k-plets is: pi(r1, r2) =
(

r1
i

)(
NLk−r1

r2−i

)/(
NLk
r2

)
; it is not difficult to show that

pi(r1, r2) = pi(r2, r1).

Notice also that
∑r1

i=0

(
r1
i

)(
NLk−r1

r2−i

)
=

(
NLk
r2

)
(which is known as the Chu-Vandermonde identity).

Hence:
∑r1

i=0 pi(r1, r2) =
∑r2

i=0 pi(r2, r1) = 1. Therefore, the number of k-plets expected to be

shared by two random sequences, one with m1 mutations and the other with m2 mutations is:

nk(r1, r2) =

r1∑
i=0

i × pi(r1, r2), (12)

and the total number of different k-plets among the two sequences is:

r1 + r2 − nk(r1, r2). (13)

Denote s1 = r1, and s2 = r1 + r2 − nk(r1, r2) = r1 + r2 − nk(s1, r2) and let consider a third sequence

with r3 k-plets. Then the number of different k-plets among those of sequences 1 and 2 and those

of sequence 3 is:

s3 = s2 + r3 − nk(s2, r3) = r1 + r2 + r3 − nk(s1, r2) − nk(s2, r3). (14)

In general, considering nB sequences in a sample, the number of different k-plets among all those

nB sequences is:

T diff
nB

= snB =

nB∑
i=1

ri −

nB−1∑
i=1

nk(si, ri+1) = rnB +

nB−1∑
i=1

(
ri − nk(si, ri+1)

)
. (15)

For a more realistic scenario, where baseline mutability is not the same for all microsequences

and all positions along a V gene sequence, this has to be taken into account accordingly. We

have further developed the above model to include two subsets of nucleotides, L1 and L2 (with
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L = L1 + L2), within a V sequence, with different mutation probabilities, p1 and p2, respectively.

In this case, the probability that after g division cycles a sequence has m mutations is given by:

Pg(L1, L2, m) =

m∑
m1=0

Pg(L1, m1) × Pg(L2, m2). (16)

where, Pg(Li, mi) is the probability defined in Eqn. 6, for a V sequence of length Li and baseline

mutability pi, with i = 1, 2.

Although the formulas are more involved, a closed form for Pg(L1, L2, m) can still be obtained:

Pg(L1, L2, m) =

(
1 + 3 × (1 − 4p1)g

4

)L1

×

(
1 + 3 × (1 − 4p2)g

4

)L2

×

3 ×
(
1 − (1 − 4p2)g

)
1 + 3 × (1 − 4p2)g


m

×(
L2

m

)
× 2F1(a, b, c, z). (17)

where 2F1 is the Gaussian hypergeometric function, with a = −L1; b = −m; c = 1 + L2 − m; and

z =

(
− 1 + (1 − 4p1)g

)
×

(
1 + 3 × (1 − 4p2)g

)
(
1 + 3 × (1 − 4p1)g

)
×

(
− 1 + (1 − 4p2)g

) (18)

As expected, for p1 = p2 or for L1 = 0 (or L2 = 0) the formula for this probability boils down

to that of Eqn. 6. In Table 1, the results for the calculation of Pshare for different values of k, p1,

and p2 are given, corresponding to both the uniform and the non-uniform mutation probability

cases, and assuming that sample sizes are nA = nB = 20, and that each sequence has the expected

(average) number of k-plets.
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Table 1: Pshare for different parameter values, with L = 300 and L1 = 30a.

k Pshare

p1 = 0.0003 p1 = 0.0003 p1 = 0.00003
p2 = 0.0003 p2 = 0.00003 p2 = 0.00003

g = 15 3 0.00071 3.3 × 10−8 7.5 × 10−10

4 3.9 × 10−6 6.3 × 10−12 4.2 × 10−14

5 1.7 × 10−8 9.5 × 10−16 1.8 × 10−18

g = 21 3 0.0052 2.4 × 10−7 5.6 × 10−9

4 5.6 × 10−5 9.1 × 10−11 6.1 × 10−13

5 4.7 × 10−7 2.7 × 10−14 5.3 × 10−17

aUsual estimates for the mutation probability, p̄, are 10−4 − 10−3 per base pair

and division cycle; notice that p1, p2 = 1
3 p̄. Assuming GC B cells follow three

division cycles per day, the used values g = 15 and g = 21 correspond, respec-

tively, to 5 and 8 days after the onset of SHM. Since the SHM mechanism is

estimated to be activated between days 5 and 7 of a primary immune response

(see, for instance, references [2–6]) the above values for g correspond to days

10 and 12 (or 13 and 15) of the immune response.
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