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Table S1. 13C (175 MHz) and 1H (700 MHz) NMR spectroscopic data for 11-methoxy-

bisnoryangonin. 

 

Figure S1. Selected mass ion chromatogram and the proposed structures of each chalcone peak 

(denoted by an asterisk) from analyses of reaction products shown in Figure 5. A) Peak at 12.7 

min (trace (a) in Figure 5) exhibited m/z 257 [M+H]+ and m/z 255 [M-H]-, which corresponded to a 

chalcone compound (MW 256). B) Peak at 9.8 min (trace (b) in Figure 5) exhibited m/z 273 [M+H]+ 

and m/z 271 [M-H]-, which corresponded to a chalcone compound (MW 272). C) Peak at 8.5 min (trace 

(c) in Figure 5) exhibited m/z 289 [M+H]+ and m/z 287 [M-H]-, which corresponded to a chalcone 

compound (MW 288). D) Peak at 11.0 min (trace (b) in Figure 5) exhibited m/z 311 [M+H]+ and m/z 

309 [M-H]-, which corresponded to 4-coumarate dehydrodimer (MW 310). 

 

Figure S2. HPLC profile and the proposed structures of in vitro enzymatic reactions with 

cinnamic acid (A), 4-coumaric acid (B), and caffeic acid (C). Lower panels represent standard 

phenylpropanoic acids and upper panels represent reaction results. The absorbance was monitored at 

280 nm. Cinnamic acid, 4-coumaric acid, and caffeic acid formed new peaks (12.7 min, 9.8 min, and 

8.5 min, respectively) corresponding to the molecular weights of different chalcone compounds, which 

are denoted by asterisks.  

 

Figure S3. LC/MS/MS analysis of dimer compound. (A) The peak at 10.9 min exhibited parent mass 

ion peaks at m/z 371 [M + H]+ and m/z 369 [M - H]- , which corresponded to molecular weight 370 Da. 

(B) Structure and MS/MS spectra of the predicted dimer compound.  
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Figure S4. Schematic illustration showing the strategies for constructing the genome engineered 

strain.  

A) Construction of the L‑tyrosine overproducing strain of E. coli (ΔCOS1) was achieved by extra gene 

insertion of aroG and tyrA, feedback-inhibition resistance (fbr) genes on the tyrR gene locus in 

C41(DE3) strain (Kang et al. 2015). B) Construction of the ferulic acid overproducing strain of E. coli 

(COS6-T5M) was achieved by extra gene insertion of T5M module (optal, sam5, and com gene) on 

the bioC gene locus in ΔCOS1 strain (Kang et al. 2018). 



Table S1 . 13 C (175 MHz) and 1H (700 MHz) NMR Spectroscopic Data for 11-methoxyl-bisnoryangonin..

hispdina 11-methoxyl-bisnoryangoninb

Position δc δH (J in Hz) δc δH (J in Hz)

2 168.82 170.4

3 89.50 5.23(1H, s) 89.3 5.30(1H, d, 2.0)

4 169.85 159.9

5 101.30 6.13(1H, s) 100.5 6.13(1H, d, 2.0)

6 160.35 163.1

7 116.91 6.67(1H, d, 16) 116.7 6.84(1H, d, 16.0)

8 134.81 7.12(1H, d, 16) 134.7 7.22(1H, d, 16.0)

9 127.26 126.8

10 114.47 7.03(1H, d, 2.0) 110.7 7.27(1H1 d, 1.9)

11 145.95 148.4

12 147.88 148.0

13 116.16 6.77(1H, d, 8.1) 115.7 6.79(1H, d, 8.1)

14 120.73 6.95(1H, dd, 8.1;2.0) 122.0 7.07(1H, dd, 8.2,;1.8)

10-OCH3 55.7 3.82(3H, s)
aLi-feng ZAN et al. (2011) for the literature values of 1H and 13C NMR data
b11-methoxyl-bisnoryangonin in DMSO-d6 (700MHz for 1H and 175MHz for 13C NMR data)



Figure S1. Selected mass ion chromatogram and the proposed structures of each chalcone 
peak (denoted by an asterisk) from analyses of reaction products shown in Figure 5.
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Figure  S2. HPLC profile of in vitro enzymatic reactions with cinnamic acid (A), 4-coumaric 
acid (B), and caffeic acid (C).
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Figure S3. LC/MS/MS analysis of dimer compound.
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A) Construction of the L-tyrosine overproducing strain of E. coli (ΔCOS1)

Figure S4. Schematic illustration showing the strategies for constructing the genome 
engineered strain.



B) Construction of the ferulic acid overproducing strain of E. coli (COS6-T5M)
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>pnPKS Piper nigrum styrylpyrone synthase cDNA 

ATGTCGAAGACGGTAGAGGAGATTCGGGCGGCACAGCGGGCGAGGGGACCAGCCGCGGTGCTGGCCATCG

GCACGGCTACCCCGGCCAATGTGGTTTTCCAGGCCGATTATCCGGACTACTACTTTAGGATCACCAAGAGCGA

GCACATGACCGAGCTCAAGGAGAAGTTCCAACGAATGTGTGACAAGTCAATGATAAGGAAGCGGTACATGCA

CTTGTCAGAGGAGCTGCTGAAAAACAACCCTAACATCTGTGCCTACATGGCCCCTTCCCTCGACGCTCGCCAA

GATATGGTGGTGGTGGAGGTACCCAAGCTCGGCAAGGAGGCGGCCGCCAAGGCCATCAAGGAGTGGGGTC

GCCCAAAGTCGGGCATCACCCACCTCATCTTCTGCACTACCTCCGGCGTCGACATGCCCGGCGCCGACTACCA

GCTCACCAAGCTCCTCGGCCTCCGCGCCTCCGTCCGCCGCACCATGATCTATCAGCAGGGCTGCTTCGCCGGT

GGCACTGTCCTCCGCCTTGCCAAGGACCTCGCAGAGAACAATGCGGGCGCGAGGGTCCTCGTCGTCTGCTCC

GAGATCACCGCCGTCACCTTCCGCGGCCCCTCGGAGACTCAACTCGATAACATGGTAGGCCAGGCGCTGTTC

GGCGATGGCGCGGCTGCCATCATTATCGGGGCCGACCCTGACCCTGCCATAGAAAGGCCACTCTTTCAAATG

GTATCTGCAGCTCAGACCATTCTTCCTGACTCGGAGGGAGCCATAGACGGCCATCTCCGAGAAGTGGGTCTAA

CCTTCCACCTCCTCAAGGACGTACCTGGGCTCATCTCAAAGAACATCGAGAAGAGCCTCAAGGAGGAGTTTG

CACCGCTGGGCATCGACGACTGGAACTCGATATTTTGGATAGCTCATCCAGGCGGGCCTGCCATTCTAGACCA

GGTGGAGGCGAAGCTGGGTCTGAAAGAGGACAAGCTGAAGACAACGAGATCAGTTCTGAGAGAGTATGGG

AATATGTCGAGCGCTTGCGTGTTGTTCATACTGGACGAGATGAGGAGGAGGAGCATGGAGGAAGGGAAGAC

GACGACCGGTGAAGGGTTGGATTGGGGAGTTTTGTTTGGTTTTGGGCCGGGTTTGACCGTGGAGACGGTCGT

CTTGCATAGTTTGCCCATCGCCGAGGCCAACTAA 


