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Table S1. C (175 MHz) and 'H (700 MHz) NMR spectroscopic data for 11-methoxy-

bisnoryangonin.

Figure S1. Selected mass ion chromatogram and the proposed structures of each chalcone peak
(denoted by an asterisk) from analyses of reaction products shown in Figure 5. A) Peak at 12.7
min (trace (a) in Figure 5) exhibited m/z 257 [M+H]" and m/z 255 [M-H], which corresponded to a
chalcone compound (MW 256). B) Peak at 9.8 min (trace (b) in Figure 5) exhibited m/z 273 [M+H]"
and m/z 271 [M-H], which corresponded to a chalcone compound (MW 272). C) Peak at 8.5 min (trace
(c) in Figure 5) exhibited m/z 289 [M+H]" and m/z 287 [M-H], which corresponded to a chalcone
compound (MW 288). D) Peak at 11.0 min (trace (b) in Figure 5) exhibited m/z 311 [M+H]* and m/z

309 [M-H]-, which corresponded to 4-coumarate dehydrodimer (MW 310).

Figure S2. HPLC profile and the proposed structures of in vitro enzymatic reactions with
cinnamic acid (A), 4-coumaric acid (B), and caffeic acid (C). Lower panels represent standard
phenylpropanoic acids and upper panels represent reaction results. The absorbance was monitored at
280 nm. Cinnamic acid, 4-coumaric acid, and caffeic acid formed new peaks (12.7 min, 9.8 min, and
8.5 min, respectively) corresponding to the molecular weights of different chalcone compounds, which

are denoted by asterisks.

Figure S3. LC/MS/MS analysis of dimer compound. (A) The peak at 10.9 min exhibited parent mass
ion peaks at m/z 371 [M + H]" and m/z 369 [M - H]-, which corresponded to molecular weight 370 Da.

(B) Structure and MS/MS spectra of the predicted dimer compound.



Figure S4. Schematic illustration showing the strategies for constructing the genome engineered

strain.

A) Construction of the 1 -tyrosine overproducing strain of £. coli (ACOS1) was achieved by extra gene
insertion of aroG and tyrA, feedback-inhibition resistance (fbr) genes on the #yrR gene locus in
C41(DE23) strain (Kang et al. 2015). B) Construction of the ferulic acid overproducing strain of E. coli
(COS6-T5M) was achieved by extra gene insertion of TSM module (optal, sam5, and com gene) on

the bioC gene locus in ACOSI1 strain (Kang et al. 2018).



Table S1. 13 C (175 MHz) and 1H (700 MHz) NMR Spectroscopic Data for 11-methoxyl-bisnoryangonin..

hispdin? 11-methoxyl-bisnoryangonin®
Position d, Oy (J in Hz) d, Oy (J in Hz)
2 168.82 170.4
3 89.50 5.23(1H, s) 89.3 5.30(1H, d, 2.0)
4 169.85 159.9
5 101.30 6.13(1H, s) 100.5 6.13(1H, d, 2.0)
6 160.35 163.1
7 116.91 6.67(1H, d, 16) 116.7 6.84(1H, d, 16.0)
8 134.81 7.12(1H, d, 16) 134.7 7.22(1H, d, 16.0)
9 127.26 126.8
10 114.47 7.03(1H, d, 2.0) 110.7 7.27(1H1 d, 1.9)
11 145.95 148.4
12 147.88 148.0
13 116.16 6.77(1H, d, 8.1) 115.7 6.79(1H, d, 8.1)
14 120.73 6.95(1H, dd, 8.1;2.0) 122.0 7.07(1H, dd, 8.2,;1.8)
10-OCH3 55.7 3.82(3H, s)

aLi-feng ZAN et al. (2011) for the literature values of 'H and '3C NMR data

b1 1-methoxyl-bisnoryangonin in DMSO-d, (700MHz for 'H and 175MHz for 3C NMR data)




Figure S1. Selected mass ion chromatogram and the proposed structures of each chalcone
peak (denoted by an asterisk) from analyses of reaction products shown in Figure 5.
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Figure S2. HPLC profile of in vitro enzymatic reactions with cinnamic acid (A), 4-coumaric
acid (B), and caffeic acid (C).
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Figure S3. LC/MS/MS analysis of dimer compound.
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Figure S4. Schematic illustration showing the strategies for constructing the genome
engineered strain.

A) Construction of the L-tyrosine overproducing strain of E. coli (ACOS1)
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B) Construction of the ferulic acid overproducing strain of E. coli (COS6-T5M)
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>pnPKS Piper nigrum styrylpyrone synthase cDNA

ATGTCGAAGACGGTAGAGGAGATTCGGGCGGCACAGCGGGCGAGGGGACCAGCCGCGGTGCTGGCCATCG
GCACGGCTACCCCGGCCAATGTGGTTTTCCAGGCCGATTATCCGGACTACTACTTTAGGATCACCAAGAGCGA
GCACATGACCGAGCTCAAGGAGAAGTTCCAACGAATGTGTGACAAGTCAATGATAAGGAAGCGGTACATGCA
CTTGTCAGAGGAGCTGCTGAAAAACAACCCTAACATCTGTGCCTACATGGCCCCTTCCCTCGACGCTCGCCAA
GATATGGTGGTGGTGGAGGTACCCAAGCTCGGCAAGGAGGCGGCCGCCAAGGCCATCAAGGAGTGGGGTC
GCCCAAAGTCGGGCATCACCCACCTCATCTTCTGCACTACCTCCGGCGTCGACATGCCCGGCGCCGACTACCA
GCTCACCAAGCTCCTCGGCCTCCGCGCCTCCGTCCGCCGCACCATGATCTATCAGCAGGGCTGCTTCGCCGGT
GGCACTGTCCTCCGCCTTGCCAAGGACCTCGCAGAGAACAATGCGGGCGCGAGGGTCCTCGTCGTCTGLTCC
GAGATCACCGCCGTCACCTTCCGCGGCCCCTCGGAGACTCAACTCGATAACATGGTAGGCCAGGCGCTGTTC
GGCGATGGCGCGGCTGCCATCATTATCGGGGCCGACCCTGACCCTGCCATAGAAAGGCCACTCTTTCAAATG
GTATCTGCAGCTCAGACCATTCTTCCTGACTCGGAGGGAGCCATAGACGGCCATCTCCGAGAAGTGGGTCTAA
CCTTCCACCTCCTCAAGGACGTACCTGGGCTCATCTCAAAGAACATCGAGAAGAGCCTCAAGGAGGAGTTTG
CACCGCTGGGCATCGACGACTGGAACTCGATATTTTGGATAGCTCATCCAGGCGGGCCTGCCATTCTAGACCA
GGTGGAGGCGAAGCTGGGTCTGAAAGAGGACAAGCTGAAGACAACGAGATCAGTTCTGAGAGAGTATGGG
AATATGTCGAGCGCTTGCGTGTTGTTCATACTGGACGAGATGAGGAGGAGGAGCATGGAGGAAGGGAAGAC
GACGACCGGTGAAGGGTTGGATTGGGGAGTTTTGTTTGGTTTTGGGCCGGGTTTGACCGTGGAGACGGTCGT
CTTGCATAGTTTGCCCATCGCCGAGGCCAACTAA




