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1 PARAMETER OPTIMIZATION FOR PHOTOACOUSTIC SPECTRAL ANALYSIS
To maximize the sensitivity, specificity, and accuracy of our approach (see Section 2.6 for metric definitions),
the parameters for in-phase quadrature demodulation, PCA, and NN were first optimized through an iterative
search. These parameters were the modulation frequency, filtered bandwidth, axial kernel size, number of
principal components to use, and the k nearest neighbors used to determine the most common class in k-NN
clustering. Each parameter was changed one at a time, and this search was repeated each time the parameter
was changed. During each analysis, the optimal parameter found from the previous step was saved and
used to find the new output until the optimal set of parameters were found. For the IQ-modulation, different
combinations of bandwidth of 80-240% in intervals of 20% were tested with the modulation frequency
which ranged from 2 MHz to 12 MHz in intervals of 2 MHz. Similarly, the axial kernel size was explored
from 11 to 51 axial samples in increments of 2. For the PCA, the principal components were changed
from 10 to 200 in steps of 10 and then from 1-10 in steps of 1. Finally, the NN classifier was analyzed by
changing the classifier to 2-NN through 10-NN in increments of 1. The initial parameters were obtained
from a previous publication in our group (1). The optimization process was conducted on datasets obtained
with laser wavelengths ranging from 690 nm to 950 nm in 10 nm increments.

Fig. S1 shows two known criteria to determine the optimal number of principal components used
in the dual-wavelength atlas method. Each scatter point and error bar represents the mean and one
standard deviation, respectively, of eigenvalues (left plot) and explained variance (right plot) from the 351
wavelength pairs (see Section 1.2 of the manuscript) at a specific principal component. For the Kaiser
rule (2), only the first principal component shows a distribution with values greater than 1.00, while the
second principal component shows a mean eigenvalue less than 1.00. Similarly, the commonly accepted
80%-explained-variance threshold filter the first and second principal component when considering the
mean value. However, when considering the standard deviation, the second principal component surpasses
the variance threshold. Therefore, only the first principal component was used for the feature extraction in
the dual-wavelength atlas method.

Fig. S2 shows the mean accuracy of classification results for the dual-wavelength atlas method before
(left) and after (right) parameter optimization. The top right half of each image represents a triangle

Figure S1. Criteria for determining the optimal number of principal components for the dual-wavelength
atlas method using the (left) Kaiser rule (2) and (right) a 80% variance threshold.
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Figure S2. Mean accuracy classification results of the dual-wavelength atlas method per wavelength pair
with a dataset of 10 frames per wavelength using the initial parameters of Gonzalez et al. (1) and the
updated parameters.

with each pixel displaying the average accuracy of classifying methylene blue and blood for a specific
wavelength pair over 10 frames. The new parameter set consisted of a modulation frequency of 2 MHz,
bandwidth of 140%, 30 axial samples, 1 principal component, and 1-NN. For each triangle, we define
the “low-wavelength region” as wavelength pairs <800 nm, the “high-wavelength region” as wavelength
pairs >850 nm, and the “mid-wavelength region” as wavelengths that do not belong to either the low- or
high-wavelength regions. For wavelength pairs located in the mid-wavelength region, the mean accuracy
increased from 85.45% to 95.67%. In contrast, for wavelength pairs that located in either the low- or high-
wavelength region, the mean accuracy decreased from 74.67% to 67.40%. In clinical practice, we envision
the use of a reduced set of wavelength pairs, choosing those that maximize the sensitivity, specificity and
accuracy (i.e., mostly occurring in the mid-wavelength region) and otherwise omitting wavelength pairs
that result in poor classification performance.

Fig. S3 shows a summary of sensitivity, specificity, and accuracy among the 351 wavelength pairs before
and after parameter optimization. The mean ± one standard deviation of sensitivity showed no significant
change from 91.6 ± 16.8% to 90.9 ± 14.8%. However, an increase in specificity was observed from 70.7
± 16.9% to 81.7 ± 20.9%, which in turn resulted in an overall increase of specificity from 81.5 ± 10.4%
to 85.9 ± 17.1%. Because blood was considered as negative samples for the specificity metric, the results
suggest that the optimized version of the dual-wavelength atlas method can identify blood with more
accuracy than with the initial parameter set used in Gonzalez et al. (1).

Figure S3. Summary of sensitivity, specificity, and accuracy results of the dual-wavelength atlas method
before and after parameter optimization.
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Figure S4. Setup for reference spectra acquisition. A and B represent the imaging depths of 5 and 9 cm
for aluminum, respectively. C and D represent the imaging depths of 5 and 9 cm for steel, respectively.

2 SELECTION OF REFERENCE SPECTRA FOR K-MEANS CLUSTERING
Fig. S4 illustrates the ultrasound acquisition setup used to evaluate the performance variability of the
method proposed by Cao et al. (3). In particular, eight ultrasound reference spectra were acquired from
two materials: (1) an aluminium plate and (2) a carbon-steel plate. These two materials contain relatively
flat, reflective surfaces, which make them ideal for use as reference spectra (4). These two materials also
have acoustic properties that produce different pulse-echo responses (5, 6), which affects the normalization
process applied to the acquired spectra and results in different classification accuracies.

Acquisitions were obtained after independently placing each material at axial depths of 5 cm or 9 cm
from the L3-8 ultrasound transducer, tilted 45◦ or 0◦ relative to the elevation-lateral plane of the transducer.
Each reference spectra was calculated by averaging the fast Fourier transform of scan lines across the lateral
dimension. Then, a comparison of the accuracy results was conducted only for the subsets obtained from
the optimal laser wavelength λ, defined by Eq. 7 in the manuscript. The reference spectra that produced the
highest median classification accuracy was selected for comparison of the method by Cao et al. (3) with
other methods reported throughout the manuscript.

Figure S5. Mean classification accuracy of k-means clustering with different reference spectra. The box
plots represent the group of frames evaluated with laser wavelength that achieved the overall best accuracy
among reference spectra (i.e., 840 nm). The three letter codes on the abscissa represent the material of
the reference (i.e., A = Aluminum or S = Steel), followed by the orientation of the material relative to the
ultrasound transducer (i.e., O = Orthogonal or T= Tilted), followed by the imaging depth of 5 cm or 9 cm
(i.e., T = Top or B = Bottom, respectively).
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Fig. S5 shows the classification accuracy achieved after performing the k-means clustering step of the
method of proposed by Cao et al. (3), obtained with a laser wavelength of 890 nm (which was the optimal
parameter λ defined by Eq. 7 in the manuscript) when using the reference spectra described above. The
reference spectra reported for the k-means clustering method in Fig. 6 of the manuscript was obtained from
the tilted aluminum reference with an imaging depth of 9 cm (i.e, ATB in Fig. S5). This reference was
chosen because it produced the greatest classification accuracy (i.e., 84.0%).
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