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1 ALIGNMENT IN THE CLASSIFICACTION TASK
Instead of measuring the model performance in the classification task presented in Sect. 3.2 by the fraction
of correctly classified patterns, as shown in Fig. 4, one can also use the correlation between Ip and Id, as
done in Sect. 3.1. This is shown in Fig. S1. One observes a more pronounced difference between the point
model and the compartment model, where the latter results in an overall better alignment for the tested
parameter space.

Figure S1. Alignment between Basal and Apical Input after Binary Classification Learning.
Correlation between proximal and distal inputs after training, as described in Sect. 3.2. A–C: Classical
Hebbian plasticity. D–F: BCM rule. In the bar plot on the right the sum Σacc over s = 0, 0.5, 1.0 .. of
the results is shown as a function of Ndist. Blue bars represents the compartment model, orange the point
model.

2 OBJECTIVE FUNCTION OF BCM LEARNING IN THE COMPARTMENT MODEL
To gain a better understanding of why the BCM-type learning rule in combination with the implemented
compartment model drives the neuron towards the temporal alignment between Ip and Id, we can formalize
the learning rule for the proximal weights in terms of an objective function. For this purpose, we further
simplify Equation (1) by replacing the sigmoid functions σ(x) by a simple step function Θ(x). This does
not change the overall shape or topology of the activation in the (Ip, Id) space but merely makes the smooth

1



Supplementary Material

Figure S2. Objective Function for the Proximal Weight Update. The approximate objective function
for the proximal weights as given in (S2) as a 3d-plot (A) and color-coded (B). This corresponds to a
combination of using Equation (1) together with Equation (16). Note the ridge-like structure along the
Ip-Id diagonal, which supports the alignment between proximal and distal input.

transitions sharp and instantaneous. Using ∆wi ∝ y (y − θM )xi, we find in this case

∆wi ∝
[
(1− α)Θ(Id − θd)Θ(p− θp1) + α(α− 1)Θ(θd − Id)Θ(p− θp0)

]
xi . (S1)

Noting that Θ(x) is the first derivative of the ReLu function [x]+ ≡ max(0, x), we find that this update
rule can be written as

∆wi ∝
∂Lp
∂wi

Lp = (1− α)Θ(Id − θd)[p− θp1]+ + α(α− 1)Θ(θd − Id)[p− θp0]+ . (S2)

The objective function Lp is shown in Fig. S2. One observes that states closer to the Ip-Id diagonal are
preferred since they tend to yield higher values of Lp, while the opposite is the case for off-diagonal states.

It should be noted, though, that the objective function is not scale-invariant (as would be e.g. if the
squared error was used) in the sense that the prior distributions of both proximal and distal inputs need
a certain mean and variance to cover a region of input states for which the described effects can take
place. As a counterexample, one could imagine that the input samples only covered a flat area of Lp, as
for example in Fig. S2B in the lower-left quadrant, leading to a zero average gradient. This is prevented,
however, by the homeostatic processes acting simultaneously on the gains and biases, making sure that
the marginal distributions of Ip and Id are such that higher correlations are preferred. For example, if we
assume a Gaussian marginal distribution for both Ip and Id with zero means and a standard deviation of 0.5
(which is used as a homeostatic target in the simulations), the expected value of L(Ip, Id) is −0.055 if Ip
and Id are completely uncorrelated, and 0.07 in the perfectly correlated case.
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