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Supplementary Material

1 ALIGNMENT IN THE CLASSIFICACTION TASK

Instead of measuring the model performance in the classification task presented in Sect. [3.2] by the fraction
of correctly classified patterns, as shown in Fig.[4] one can also use the correlation between [, and I, as
done in Sect.[3.1] This is shown in Fig.[ST] One observes a more pronounced difference between the point
model and the compartment model, where the latter results in an overall better alignment for the tested
parameter space.
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Figure S1. Alignment between Basal and Apical Input after Binary Classification Learning.
Correlation between proximal and distal inputs after training, as described in Sect. [3.2] A-C: Classical
Hebbian plasticity. D-F: BCM rule. In the bar plot on the right the sum >,.. over s = 0, 0.5, 1.0.. of
the results is shown as a function of Ng;s. Blue bars represents the compartment model, orange the point
model.

2 OBJECTIVE FUNCTION OF BCM LEARNING IN THE COMPARTMENT MODEL

To gain a better understanding of why the BCM-type learning rule in combination with the implemented
compartment model drives the neuron towards the temporal alignment between [, and I,;, we can formalize
the learning rule for the proximal weights in terms of an objective function. For this purpose, we further
simplify Equation (I)) by replacing the sigmoid functions o(x) by a simple step function ©(x). This does
not change the overall shape or topology of the activation in the (1, /) space but merely makes the smooth




Supplementary Material

B
2
= 0.50
00 & - 0.00
-0.5 = 0 = -0.25
-1.0
= -0.50
-1
= -0.75
= -1.00
-2
-2 -1 0 1 2

lp

Figure S2. Objective Function for the Proximal Weight Update. The approximate objective function
for the proximal weights as given in (S2) as a 3d-plot (A) and color-coded (B). This corresponds to a
combination of using Equation () together with Equation (T6)). Note the ridge-like structure along the
I-1,4 diagonal, which supports the alignment between proximal and distal input.

transitions sharp and instantaneous. Using Aw; o< y (y — 03s) z;, we find in this case
Aw; o |(1— )OIy — 02)0(p — bp1) + ala — 1)O(8y — 1)O(p — epo)]xi . (S1)

Noting that O(z) is the first derivative of the ReLu function [z]T = max(0, z), we find that this update
rule can be written as

o,
Aw; Do
ﬁp = (1 - Oz)@([d — Qd)[p — 9p1]+ + Oé(Oé — 1)@(9d — Id)[ - 9p0]+ . (S2)

The objective function £, is shown in Fig. |S_7} One observes that states closer to the [,,-1; diagonal are
preferred since they tend to yield higher values of £,,, while the opposite is the case for off-diagonal states.

It should be noted, though, that the objective function is not scale-invariant (as would be e.g. if the
squared error was used) in the sense that the prior distributions of both proximal and distal inputs need
a certain mean and variance to cover a region of input states for which the described effects can take
place. As a counterexample, one could imagine that the input samples only covered a flat area of £, as
for example in Fig.[S2B in the lower-left quadrant, leading to a zero average gradient. This is prevented,
however, by the homeostatic processes acting simultaneously on the gains and biases, making sure that
the marginal distributions of I, and I; are such that higher correlations are preferred. For example, if we
assume a Gaussian marginal distribution for both I}, and I; with zero means and a standard deviation of 0.5
(which is used as a homeostatic target in the simulations), the expected value of £(,, I) is —0.055 if I,
and /; are completely uncorrelated, and 0.07 in the perfectly correlated case.
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