
Details on Expectation-Maximization (EM) Algorithm
Estimation Procedure

Let (x(1), . . . , x(K)) denote the epidemic source locations for each k = 1, . . . , K with x(k) ∈
R2. Now an arbitrary location x ∈ R2 is associated with K sets of polar coordinates
(r(1), φ(1)), . . . , (r(K), φ(K)) where the k-th polar coordinate pair indicates the distance r(k)
and angle φ(k) to the kth source point x(k). Applying the model framework given in the main
paper to each set of coordinates yields the collection of velocity models
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Now, if multiple sources are present, any given location could be subject to disease exposure
from as many as K wavefronts moving simultaneously. Yet, depending on conditions, the
movement patterns of the wavefronts, and relative distances to each epicenter, an infection
event at any particular time and location is attributable to the different sources with varying
probability. In other words, disease at particular locations is more likely due to certain
sources rather than others. To accommodate this intuition, a latent process Z is introduced
that indicates the relative probabilities of disease associated with each of the K sources, and
the collection of models given in Equation (1) describe (r, φ, t) conditional on the possible
values of Z.
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We propose an estimation procedure wherein velocity models are fit using regression methods
conditional on known gk. The functions gk introduce anisotropy in the model. In many
applications, known variables drive anistropy, so it is plausible to estimate gk from covariate
information or secondary data sources.
The velocity models (Equation (1)) are fitted conditional on gk to disease occurrence data
(presence or absence) of the form Y =
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indicating the
locations and times of the first observed disease case. For the purpose of exposition, suppose
one is fitting only the kth model: consider just the data (r
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i , ti) and assume P (Zi =

k) = 1. Now, adding an offset ck and Gaussian error term ε
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i to Equation (1) yields the
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Under this multiple source situation, the complete data can be given as
X =
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, where Zi ∈ {0, 1}K for all i ∈ {1, . . . , n} with
only one 1 rest all 0’s in each Zi. {Zi}ni=1 are considered as the unobserved data. The source
with which the i-th location is principally associated with is given by Zi by taking the value
1. The unknown parameter set is given by Θ =
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The likelihood of the parameters Θ given the complete data X is given by
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where ϕ(x, σ2) is the probability density function of a Gaussian random variable with mean
zero and variance σ2 evaluated at value x. The log-likelihood of the parameters Θ given the
complete data X is given by
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The expected log-likelihood of the parameters Θ given the complete data X is given by
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where, p(k)i = E(Zik = 1|Y), the probability of i-th location being principally associated
with the k-th source (i ∈ {1, . . . , n}, k ∈ {1, . . . , K}). The Expectation-Maximization (EM)
algorithm is an iterative algorithm which iterates between the expected log-likelihood and
maximizing the expected log-likelihood.
The maximization of the complete log-likelihood in Equation (7) can be broken down into
K minimization problems involving weighted least squares problems -
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The minimization of weighted least squares loss function in Equation (8) leads to estimates
of ck, Mk and hk given prior estimates of σ2

k and
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. Estimates of ck, Mk and hk are
easily computed using semiparametric regression. Let s1(·), . . . , sB(·) denote a set of B basis
functions. Now, rewriting Equation (4) we obtain
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Finally, this estimation strategy is extended to the full collection of K models by accounting
for the latent variables Zi that attribute each of the i-th data points to one of the K sources.
Formally, the joint likelihood of the data arising from Equations (2) and (3) is maximized
with respect to the parameters p(k) ∈ RN , βk ∈ RB+2, and σ2

k for k = 1, . . . , K. The EM
algorithm is used to iteratively update estimated multinomial probabilities p̂(1)i , . . . , p̂

(K)
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each data point in alternation with fitting the regression models in Equation (9) using the
estimate p̂(k)i as a regression weight for the i-th data point in fitting the k-th model. In
detail, the iterations are given by:

1. Initiate p̂(k)i as the weight of ith data-point to be associated with kth source, where∑K
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ĉk, M̂k, ĥk, σ̂
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3. Update p̂(k)i by
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where ϕ(x, σ2) is the probability density function of a Gaussian random variable with
mean zero and variance σ2 evaluated at value x.

4. Repeat steps 2-3 until convergence.

A simple heuristic for the initialization step is to use as p̂(k)i the estimated probabilities
obtained by logistic regression of an indicator of whether the kth source is closest on the
variables r(1)/ĝ1(φ(1)), . . . , r(K)/gk(φ

(K)). We note that an isotropic model with one or many
sources can be recovered within this framework as a special case by fixing gk(x) = 1/2π for
x ∈ [0, 2π], with the consequence that hk ≡ 0.



S2 Supplementary Table 1.The mean parameter estimates and standard deviation for two-source models fit to simulated data.
Two sets of estimates are reported corresponding to a (0,0) placement for a first source and a (2000,2000) placement for a second

source.
Source 1 Source 2

Start time n σ2 Intercept Time Basis 1 Basis 2 Intercept Time Basis 1 Basis 2
True values 4.850 0.030 0.500 0.000 3.750 0.020 0.000 -1.000

Synchronous 100 0.5 4.862 0.030 0.507 -0.007 3.797 0.019 0.011 -0.985
(0.216) (0.002) (0.130) (0.124) (0.348) (0.003) (0.200) (0.202)

1 5.291 0.026 0.493 -0.119 4.009 0.018 0.026 -0.596
(0.585) (0.005) (0.252) (0.253) (1.193) (0.011) (0.626) (0.914)

500 0.5 4.869 0.030 0.504 -0.006 3.787 0.019 0.001 -0.986
(0.103) (0.001) (0.054) (0.055) (0.155) (0.002) (0.096) (0.096)

1 5.691 0.023 0.499 -0.219 3.985 0.017 0.011 -0.699
(0.204) (0.002) (0.118) (0.104) (0.523) (0.005) (0.277) (0.330)

Asynchronous 100 0.5 4.889 0.030 0.498 0.003 3.943 0.018 0.002 -0.949
(0.221) (0.002) (0.123) (0.121) (1.052) (0.008) (0.221) (0.245)

1 5.227 0.027 0.498 0.001 6.771 -0.005 -0.006 0.167
(0.516) (0.004) (0.263) (0.233) (13.537) (0.021) (0.934) (13.342)

500 0.5 4.987 0.029 0.501 0.004 4.027 0.017 -0.002 -0.931
(0.127) (0.001) (0.054) (0.050) (0.550) (0.004) (0.126) (0.126)

1 5.201 0.027 0.496 0.001 9.534 -0.018 -0.010 -0.888
(0.207) (0.002) (0.109) (0.094) (12.000) (0.014) (0.485) (11.952)


