SUPPLEMENTARY MATERIALS TO

Reduced cell excitability of cardiac postganglionic parasympathetic neurons correlates with myocardial infarction-induced fatal ventricular arrhythmias in type 2 diabetes mellitus

Supplemental	Table 1	I. Metabolic	characteristics	of sham and	T2DM rats
--------------	---------	--------------	-----------------	-------------	-----------

	Sham	T2DM
	(n=40)	(n=40)
Body weight (g)	415.7±6.7	384.4±8.4*
Fasting Blood glucose (mg/dl)	93.5±5.8	460.7±11.5*

Data are means \pm SEM. Statistical significance was determined by student's unpaired t-test. *P < 0.05 vs. Sham.

Supplemental Table 2. Alterations of electrophysiological properties on APs in CPP neurons from rats with T2DM or MI.

	RMP (mV)	V _{max} (mV/ms) C	Overshoot (mV)	APD90 (ms)
Sham	-60.9 ± 2.4	147.2 ± 6.6	77.8 ± 2.1	52.7 ± 2.1
T2DM	-60.6 ± 2.6	115.5 ± 3.9*	76.3 ± 2.4	$75.6 \pm 2.7*$
Sham+MI	$\textbf{-60.8} \pm 2.5$	138.7 ± 4.4	78.3 ± 2.3	57.5 ± 3.4

APs, action potentials; CPP, cardiac parasympathetic postganglionic; T2DM, type 2 diabetes mellitus; MI, myocardial infarction; RMP, resting membrane potential; V_{max} , the maximum rate of depolarization of action potentials; APD₉₀, action potential duration at 90% repolarization. Data are mean \pm SEM; n = 10 neurons from 5 rat per group; *p<0.05 vs. sham.