Online Supplement

	Ashbaugh 1967	AECC 1994	Berlin Definition 2012
Timing	Nil	Acute	Acute: Within 1 week of known clinical insult or new or worsening respiratory symptoms
Chest imaging	Chest radiographs: Diffuse alveolar infiltration	Bilateral infiltrates on frontal chest radiographs	Chest radiographs/CT: bilateral opacities consistent with pulmonary oedema
Oxygenation	Not clearly defined, but did report cyanosis refractory to nasal oxygen and IPPV	ALI: PaO ₂ /FiO ₂ ≤300mmHg ARDS: PaO ₂ /FiO ₂ ≤200mmHg *regardless of PEEP*	ALI removed <u>Mild</u> : 200mmHg $<$ PaO ₂ /FiO ₂ (2) \leq 300mmHg (CPAP or PEEP \geq 5cm H ₂ O <u>Moderate</u> : 100mmHg $<$ PaO ₂ /FiO ₂ \leq 200mmHg (PEEP \geq 5cm H ₂ O) <u>Severe</u> : PaO ₂ /FiO ₂ \leq 100mmHg (PEEP \geq 5cm H ₂ O)
PAWP/Oedema	Nil	≤18mmHg or no evidence of left atrial hypertension	Excluded from definition. Replaced with respiratory failure not fully explained by cardiac failure or fluid overload

eTable 1: Definitions of Acute Respiratory Distress Syndrome over time

Abbrev: AECC: American European Consensus Conference; CT: computer tomography; IPPV: intermittent positive-pressure ventilation; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; PEEP: positive end-expiratory pressure; CPAP: continuous positive airway pressure; PAWP: pulmonary artery wedge pressure

References: (1–3)

eTable 2: Prevalence and mortality of ARDS according to severity

Severity	Prevalence (%)	ICU/hospital mortality (%)
Mild	30	34.9
Moderate	46.6	40.3
Severe	23.4	46.1
Severe	23.4	46.1

Legend: Values are represented in percentages of the ARDS population.

Reference: (4)

Parameters	Differentiating markers between subphenotypes	Suphene	otype levels
		P1 levels with respect to P2	
Laboratory markers	IL-6, -8, -10, IFN-y sTNFr-1, ICAM-1	\downarrow	↑
	Ang-1/-2, RAGE	\downarrow	\uparrow
	WCC Creatinine,	\downarrow	↑ ↑
	bicarbonate, PaCO2 albumin, glucose	$\uparrow \\ \uparrow$	\downarrow
Clinical parameters	Heart rate	\downarrow	↑
-	Systolic BP Vasoactive use	\uparrow	\downarrow
	Minute ventilation,	\downarrow	↑
	plateau pressure PEEP	↓ ↓	↑ ↑
	Respiratory rate	\downarrow	↑ ↑
~			
Coagulation	Protein C	\uparrow	\downarrow
markers	Platelet count	\uparrow	\downarrow
	PAI-1 vWF	\downarrow	$\stackrel{\uparrow}{\uparrow}$

eTable 3: Differentiating factors between the two ARDS inflammatory subphenotypes

Abbreviations: IL: interleukin; sTNFr-1: soluble tumor necrosis factor receptor-1; Ang-1/2: angiopoietin-1/2; RAGE: receptor for advanced glycation end-products; CRP: C reactive protein; WCC: white cell count; PCT: procalcitonin; PAI-1: plasminogen activator inhibitor-1; vWF: von willebrand factor; PEEP: positive end expiratory pressure; IFN-y: interferon gamma; ICAM-1: Intercellular adhesion molecular-1; ICAM-1: intercellular adhesion molecule-1; WCC: White cell count; PaCO₂: partial pressure of carbon dioxide in arterial blood; BP: Blood pressure.

References: (5–10)

Cohort	Intervention	Hypoinflammatory	Hyperinflammatory	
ALVEOLI	PEEP strategy	Mortality 24% with	Mortality 42% with higher	
		higher PEEP; 16% with	PEEP; 51% with low PEEP.	
	_	low PEEP		
FACTT	Fluid strategy 90	26% mortality with fluid	40% mortality rate with fluid	
	day mortality rate	liberal strategy; 18%	liberal strategy; 50% with	
		with fluid conservative	fluid conservative strategy.	
		strategy.		
HARP	Simvastatin (28	16% mortality when	32% mortality when treated	
	day mortality)	treated with Simvastatin;	with Simvastatin; 45%	
		17% mortality when	mortality when given placebo.	
		given placebo.		
SAILS	Rosuvastatin	No evidence for subphenotype specific treatment benefit		
Kitsios et al	Comparison of at	90 day mortality for	90 day mortality for ARDS	
	risk for ARDS and	ARDS 22%; at risk for	44%; at risk for ARDS 53%	
	ARDS	ARDS 18%		

eTable 4: Mortality and reaction to interventions

Abbreviations: PEEP: Positive end expiratory pressure; ARDS: Acute Respiratory Distress Syndrome; ALVEOLI: Assessment of Low tidal Volume and elevated End-expiratory volume to Obviate Lung Injury; FACTT: Fluid and Catheter Treatment Trial; HARP: Hydroxymethylglutaryl-CoA Reductase Inhibition with Simvastatin in Acute Lung Injury to Reduce Pulmonary Dysfunction-2; SAILS: Statins for Acutely Injured Lungs from Sepsis.

References: (5–10)

References

- 1. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. *Lancet (London, England)* (1967) **2**:319–23.
- Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R. Report of the American-European consensus conference on ARDS: Definitions, mechanisms, relevant outcomes and clinical trial coordination. *Intensive Care Med* (1994) 20:225–232. doi:10.1007/BF01704707
- 3. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. *JAMA* (2012) **307**:2526–2533. doi:10.1001/jama.2012.5669
- 4. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. *JAMA* (2016) **315**:788. doi:10.1001/jama.2016.0291
- Calfee CS, Delucchi K, Parsons PE, Taylor B, Ware LB, Matthay MA. Latent Class Analysis of ARDS Subphenotypes: Analysis of Data From Two Randomized Controlled Trials. *Lancet Respir Med* (2014) 2:611–620. doi:10.1016/S2213-2600(14)70097-9.Latent
- 6. Sinha P, Delucchi K, Thompson B, McAuley DF, Matthay MA, Calfee CS. Latent class analysis of acute respiratory distress syndrome (ARDS): Secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) trial. *Am J Respir Crit Care Med* (2018) **197**:
- Delucchi K, Famous KR, Ware LB, Parsons PE, Taylor Thompson B, Calfee CS. Stability of ARDS subphenotypes over time in two randomised controlled trials. *Thorax* (2018) 73:439–445. doi:10.1136/thoraxjnl-2017-211090
- Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, Calfee CS, Network A. Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. *Am J Respir Crit Care Med* (2017) 195:331–338. doi:10.1164/rccm.201603-0645OC
- Kitsios GD, Yang L, Manatakis D V., Nouraie M, Evankovich J, Bain W, Dunlap DG, Shah F, Barbash IJ, Rapport SF, et al. Host-Response Subphenotypes Offer Prognostic Enrichment in Patients With or at Risk for Acute Respiratory Distress Syndrome*. *Crit Care Med* (2019) 47:1724–1734. doi:10.1097/CCM.00000000004018
- Sinha P, Delucchi KL, Thompson BT, McAuley DF, Matthay MA, Calfee CS. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. *Intensive Care Med* (2018) 44:1859–1869. doi:10.1007/s00134-018-5378-3