
Lijia Liu 1,∗, Joseph L. Cooper 1,2 and Dana H. Ballard 1

1Department of Computer Science, The University of Texas at Austin, Austin, TX,
USA
2Google Inc. Mountain View, CA, USA
Correspondence*:
Lijia Liu
lijialiu@utexas.edu

SUPPLEMENTARY MATERIALS
S1 Appendix: Model mathematical derivation details

The principal insight in this section is that ODE can be used as an effective controller. We present a
derivation of the mathematics underlying the physics simulation. The derivation comes from directly
analyzing the ODE codebase, and it consequently differs from other derivations using Lagrange multipliers
to arrive at the same final result (e.g., (Featherstone, 2014)). We present another derivation illustrating the
equivalence between softened constraints in ODE and implicit springs.

When modeling human movements, we assume that the human body does not collide significantly with
itself and so typically only process collisions between the model and the ground.

Notation
Physical simulation involves a large number of different variables to represent constraints and relevant

physical quantities. Table 1 presents specific symbols and their meanings for reference.

Scalars are represented with lower-case, un-bolded symbols: x. Bold lower-case symbols represent

column vectors, x =

[
x1
x2

]
. Bold, upper-case symbols to represent matrices. Dot-notation indicates time

derivative: ẋ = dx
dt . The circumflex accent indicates a 3d vector being used as a skew-symmetric matrix

representing a cross-product operation: x̂y = x× y

Coordinates are typically relative to a global reference frame. However, a tilde, x̃, indicates a quantity
that uses a local reference frame, e.g., a body-relative frame, rather than the global frame. We use subscripts
to indicate that a quantity refers to a specific dimension, a particular rigid body, a point in time, but clarify
the subscript’s meaning when necessary to remove ambiguity. Table 1 introduces the primary symbols
within the text.

For conciseness in notation, we typically combine angular and linear quantities as a single symbol. This
representation is used both for position and orientation even though orientation does not conveniently
fit into a 3× 1 vector. Fortunately, angular velocity and angular acceleration, ωand ω̇, do combine well
with linear velocity and acceleration ẋand ẍ, and it is these quantities that feature primarily when dealing
with a constrained system. We will also represent the state of multiple bodies using a single symbol when
convenient. For example, for a system with two bodies, we will represent the combined linear and angular
accelerations (a 12d vector) as ẍt. For this same 2-body system, Newton’s law relating force, mass, and

1



Supplementary Materials

Symbol Meaning
x position or state of one or more rigid bodies
ẋ velocity (usu. linear and angular)
ẍ acceleration (usu. linear and angular)
R rotation matrix representing orientation of a body
ω angular velocity
q quaternion representation of an orientation or rotation
m mass of a single rigid body
M mass matrix
I identity matrix
I moment of inertia tensor

nb, nc number of bodies, number of constraints
α,β stabilizing parameters added to the equations of motion
φ() error or energy function for a single constraint
J matrix of partial derivatives of constraint error functions
h timestep
f forces (and torques)
τ torques
λ constraint forces

Table 1. Meanings of specific symbols used to discuss dynamic simulation

acceleration is as follows:
f1t

τ 1t
f2t

τ 2t

 =


m1I 0 0 0
0 I1t 0 0
0 0 m2I 0
0 0 0 I2t



ẍ1t

ω̇1t

ẍ2t

ω̇2t

⇒ f t =M tẍt

where I and I it are 3× 3 block matrices.

Dynamic State
Coordinates in the simulation world are defined relative to an arbitrary origin and basis set of directions.

We refer to this inertial frame as the “global frame”. Each rigid body also has its own point of reference and
set of directions. Any point in the global frame can also be described relative to a body’s frame of reference.
It is convenient to define the point of reference of a body as its center of mass and use its principal inertial
axes of symmetry as directions.

The position of the center of mass and orientation of a body within the global frame are here defined as x
andR respectively. In 3d space, x is a 3× 1 vector: xT =

[
x, y, z

]
where x, y, and z are the distance from

the origin along each of the three directions that establish the global frame of reference. For consistency,
we deal with these distances in meters and assign “up” to the positive z axis.

Conservation of momentum makes it necessary to keep track of the time derivative of these quantities:
ẋ and Ṙ. Instead of explicitly representing Ṙ, it is convenient to keep track of the angular velocity:
ω =

[
ωx, ωy, ωz

]
The relationship between these quantities is Ṙ = ω̂R where ω̂ is the skew-symmetric

matrix commonly used to represent the vector cross-product So that ω̂x = ω × x.

Given nb bodies, the dynamic state of the ith body at time t is its position, orientation, linear velocity,
and angular velocity:

{
xit Rit ẋit ωit

}
. We will assume that all of these values are framed in the

global coordinate system unless specified otherwise. The body dynamics are also affected by the body’s

2



Supplementary Materials

constant mass mi and inertia tensor I it. The moment of inertia tensor, I , is indexed by time because the
body’s orientation changes how the the mass is distributed relative to the world frame: I it = RitĨ iR

T
it.

We assume that the inertia tensor is constant relative to the body-local frame of reference (i.e., bodies are
rigid).

In simulation, the forces f applied to the rigid bodies come from three general sources. These
are constraint forces (fc), gravitational and gyroscopic forces (fg), and user/control forces (fu):
f = fc + fg + fu.

Integration Step
When a force is applied to a body, it translates into acceleration that is inversely proportional to the mass.

Velocity is the time integral of acceleration, ẋt = ẋi0 +
∫ t
0 M

−1
i f tdt, and position is the time integral of

velocity, xit = xi0+
∫ t
0 ẋitdt. Because f t may depend on xt and ẋt as well as on discontinuous collisions

and control inputs, analytic descriptions of body state are not usually possible. Instead we discretize the
equations of motion and use a small, discrete timestep, h, to numerically approximate system dynamics.
The most obvious thing to do is to linearize the force function, f t, and then take all the quantities from
time t and use them to find the state at time t+ h:

ẋt+h = ẋt + hM−1f t (1)

xt+h = xt + hẋt+h (2)

This “semi-implicit Euler” integration uses using the future velocity for computing position and is more
stable than the standard formulation.

Although we lump orientation and position together as a single symbol, in practice there are a few
distinctions that need mentioning. For example, gravity only applies to the linear state, while gyroscopic
torques only apply to angular state. Gravitational forces are very straightforward, fgrav =Mg, where g
indicates the direction and magnitude of gravitational acceleration.

Rotation is a non-linear phenomenon. However, we can approximate the motion of a rotating body by
adding torques that imitate gyroscopic effects, see (Buss, 2000). Gyroscopic torques are applied to maintain
conservation of angular momentum. Explicitly applying gyroscopic torques to bodies allows us to treat the
rest of the system as though it conserved angular velocity rather than angular momentum. Thereafter, we
can deal with the combined linear and angular quantities as a linear system.

The gyroscopic torques for each body are linearly approximated by

fgyro =

[
0 0
0 ω̂t

] [
0 0
0 It

] [
0
ωt

]
These forces are zero if the three principal moments of the inertia tensor are equal. Otherwise, they
represent the forces necessary for conservation of angular momentum. Unfortunately, this approximation
tends to introduce energy into the system. We have reduced this problem in ODE by adding in additional
terms as described in (Buss, 2000).

The constrained system is solved using mostly accelerations and velocities. At the end, however, it
is necessary to integrate the velocities into new positions and orientations. Position and orientation are
updated differently. For position, it is sufficient to multiply the linear velocity by the timestep and add it to

3



Supplementary Materials

the current position. Adding angular velocity to orientation is not as straightforward. We integrate angular
velocity into orientation by converting ωi(t+h) into a quaternion and then use the quaternion to rotate the
current orientation forward in time following (Grassia, 1998).

Constraint Equation
When a rigid body is moving or spinning freely through space, the integration equations are sufficient

to simulate dynamics. Adding constraints modifies the bodies’ movements. Maintaining a relationship
between two bodies requires forming a constraint on the state of the bodies. The integration equations tell
us how to go from force to velocity and from there to position and orientation. To simulate an articulated
model using maximal coordinates, we need to know what forces constraints apply to the bodies in the
system.

To find the constraint forces, one must be able to mathematically describe the constraint. We define a
multi-dimensional function over the combined position and orientation of all bodies in the system, φ(xt),
that produces a vector of size nc specifying how much each constraint is violated, where nc is the number
of constraints acting on the system. For example, if the ith constraint keeps body b2 a distance d above body
b1 in the z direction, we would have φi(x) = x2z − x1z − d. If b2 is not separated from b1 by a distance of
d in the z direction, φi(x) reports the signed magnitude of that constraint error. For additional information
on forming constraint equations, see (Featherstone, 2014; Smith, 2005).

In general, the error for a constraint is non-zero. Given a measure of the error for a given state, we seek to
find constraint forces, fc, that reduce the error over subsequent time steps(Baumgarte, 1972). Specifically,
over the timestep h, we seek a force to reduce the magnitude of the constraint error by a fraction α. That is

φ(xt+h) = (I −α)φ(xt) (3)

where α is a k × k diagonal matrix with each αi ∈ [0, 1] representing the fraction of error reduction over a
time step. In ODE, the α value is controlled through the error reduction parameter (ERP) which can be set
independently for each constrained degree of freedom. In practice, it is not possible to remove constraint
error completely (α = 1) when using maximal coordinates because of error introduced by the various
approximations employed to make the simulation linear and fast. Values of α typically fall within [0.2, 0.8].
Manipulating this value results in useful elastic and damping effects discussed later.

We use the symbol J t to represent the nc × 6nb matrix of partial derivatives of φ(xt). This matrix is a
linear approximation of how the constraint error for each of the nc constraints changes when the positions
and orientations of the bodies change. Finding the constraint forces that satisfy Eq. 3 involves removing all
references to unknown future quantities. The Taylor expansion of φ(xt+h) at xt, truncated after the first
order term, approximates the future constraint error:

(I −α)φ(xt) = φ(xt+h) ≈ φ(xt) + J t(xt+h − xt) (4)

This truncation has the effect of treating all constraints as linear. Many constraints used to simulate various
joints are linear; others, however, contain higher-order terms and this truncation is one potential source of
error in simulation.

4



Supplementary Materials

Combining the two integrator equations, Eqs. 1 and 2, gives the future position/orientation in terms of the
present position, velocity, and forces:

xt+h = xt + hẋt + h2M−1
t

(
f ct + f gt + fut

)
(5)

Equations 3, 4, and 5 combine to eliminate all references to future quantities:

(I −α)φ(xt) = φ(xt) + J t

(
xt + hẋt + h2M−1

t

(
f ct + f gt + fut

)
− xt

)
(6)

This leaves one unknown vector at time t: the constraint forces f ct. Rearranging and simplifying, we get

J tM
−1
t f ct = −

1

h2
αφ(xt)−

1

h
J tẋt − J tM

−1
t

(
f gt + fut

)
(7)

Note that in rearranging the terms this way, we divided both sides by the squared timestep, h2, effectively
changing the problem from one dealing with positions to one dealing with accelerations. This conversion is
possible because of the relationship established between acceleration and position by the semi-implicit
Euler integrator.

Equation 7 is almost the equation that ODE solves when simulating physics. The right hand side is a
desired acceleration. The first term on the right is the acceleration that would result in a velocity that
would remove a fraction (α) of the constraint error. The second and third terms account for the effects of
momentum (current velocity), gravity, and other forces (e.g., user control forces) applied to the bodies. Each
constraint becomes its own dimension in a “constraint space”. The Jacobian matrix J projects accelerations
from global forces into constraint space.

In general, the matrix on the left hand side of Eq. 7 is not square, making the problem under-constrained
(or in some cases, potentially over-constrained). However, we can use d’Alembert’s principle(Lanczos,
2020) to restrict the constraint forces to lie in the constraint space.

Another method for arriving at the constraint equation is through the use of Lagrange multipliers.
Consequently, the constraint-space forces are typically denoted with λ. The Jacobian transpose gives the
relationship between a force applied in constraint space and force/torque applied in the full coordinate
space: f ct = J

T
t λt.

The vector, λt, holds the generalized forces applied by each constraint on all the bodies involved in that
constraint, whereas f ct holds the sum of the constraint forces applied to each individual degree of freedom
of each rigid body. The LHS of Eq. 7 can then be rewritten as J tM

−1
t J

T
t λt, where J tM

−1
t J

T
t is now a

nc × nc positive semi-definite matrix.

Returning to maximal coordinates, we will compress Eq. 7 down to

JM−1JTλ = w (8)

In general, the matrix JM−1JT may be singular. It is
very easy to end up with redundant or conflicting constraints.
For example, a box resting on the ground may get a contact
constraint at each corner. If each contact prevents interpenetration and sliding (i.e., applies friction) then the
contacts constrain a total of 12 degrees of freedom on a single rigid body with only 6 degrees of freedom to
be constrained. Conflicting or redundant constraints can break the solver if not dealt with beforehand. The
means for dealing with the conflict is clever. The physics engine softens the constraint, allowing it to “slip”
proportional to the amount of force necessary to maintain it.

5



Supplementary Materials

Because mass is always positive, the force, λ, applied to a particular constraint and the resulting constraint-
space acceleration will have the same sign. Softening the constraint is therefore a matter of subtracting a
scaled copy of λ from the desired acceleration (the right hand side): JM−1JTλ = w−βλ, where β is an
nc × nc diagonal matrix of (typically small) non-negative values. This subtraction, of course, is equivalent
to adding β to the LHS. Adding these small values to the diagonal of the effective inverse-mass-matrix
makes the constraints seem lighter to the solver and moves the matrix away from singularity:(

J tM
−1
t J

T
t + β

)
λt = −

1

h2
αφ(xt)−

1

h
J tẋt + J tM

−1
t

(
f gt + fut

)
(9)

The original programmers built soft constraints into the ODE simulation code. The variable, β, tunable
for each constraint, is known in ODE as the constraint force mixing parameter (CFM). At first glance, the
addition of these parameters may seem loose and unprincipled. However, correctly setting the parameters,
α and β, changes a hard constraint into a simulated implicit spring with first order integration (see (Smith
et al., 2005)).

It is well-known that the formula for ideal damped spring force is identical to the formula for PD
control. However, connecting these two facts, namely that (1) ODE’s constraints are mathematically
equivalent to implicit damped springs and (2) damped springs are equivalent to PD controllers, has not
been exploited. This insight is key to the success of the methods presented here. Our derivation shows
that ODE’s constraints are, in fact, stable PD controllers along with examples of how to take advantage
of this fact. We proceed by discussing proportional-derivative control and the mass-spring-damper equation.

Implicit Simulated Springs
Proportional-derivative (PD) control is a common method used to compute forces that drive a system

toward a target state. The PD control equation is the same as a mass-spring-damper system. There are two
parameters, kp and kd. The control force fut at any instant in time is a function of the current position and
velocity of the effective mass being controlled relative to its target:

fut = −kpxt − kdẋt (10)

Discrete sampling of these forces, however, ruins the stability conditions. The potential for
instability is apparent if we consider a mass m that only experiences damping forces. Using
the semi-implicit Euler integrator, Eq. 1, we plug in the damping forces from Eq. 10 to get

ẋt+h = ẋt −
hkd
m

ẋt =

(
1− hkd

m

)
ẋt (11)Time (t), mass (m), and damping (kd) should

all be non-negative values. It is clear, then, from
this equation, that if hkd

m > 2, the velocity will
oscillate between positive and negative values and
grow in magnitude. This oscillation rapidly causes the simulation to “explode” and is annoyingly common
when using PD control. Overly stiff springs hit a similar limit with explicit discrete integration that causes
them to gain energy and explode. Consequently, explicit PD control gains are tricky to tune. They must fall
within certain limits that depend on the timestep and the effective mass experienced by the system.

The reason for this instability lies in the discrete integration, which is similar to approximating the area
under a curve as the sum of multiple rectangles computed forward from the present. One solution is to

6



Supplementary Materials

solve for the forces implicitly. Implicit integration is similar to approximating the area under a curve with
fixed-width rectangles that end rather than begin on the curve. Rather than overestimate, this method tends
to underestimate the area under an exponential curve. The resulting system does not explode, although it
tends to dissipate rather than conserve energy. The implicit form of the damped-spring law depends on
the integrator it is applied to. Being ‘implicit’, in this case, specifies that spring forces are computed from
the future state of the system. Consequently, Eq. 10 becomes the following, (note the changed temporal
indices):

fut = −kpxt+h − kdẋt+h (12)

We do not know the future position or velocity, but using the integrator equations, Eqs. 2 and 1, we reframe
Eq. 12 in terms of the current quantities and then solve for fut to get

fut = −
kdẋt + kpxt + hkpẋt

1 +m−1hkd +m−1h2kp
(13)

If we analyze a pure damped system as before but using Eq. 13, we end up with

ẋt+h = ẋt −
hkdẋt
m+ hkd

=
m

m+ hkd
ẋt

The consequence of this relationship is that every constraint in ODE can be thought of as an implicit
spring. An essential feature of this formulation is that the equations are solved simultaneously. When the
implicit springs are solved simultaneously in the physics framework, the forces account for each other;
the system would be fragile without this change. Softening the constraints to springs makes it so that we
can solve a system that would otherwise be over-constrained. We can add more constraints than there are
degrees of freedom.

Solving with Complementarity Conditions
For simplicity, we compress Eq. 9 down to Aλ = w. When A is non-singular, we can solve for λ by

inverting, or preferentially, using a fast, numerically-stable solver such as a Cholesky decomposition. Some
constraints, however, come with additional conditions that need to be solved with extra machinery. In
simulation literature, these are known as inequality constraints. For example, a contact constraint keeps
two bodies from moving towards each other by defining an error function: the separation of the contacting
surfaces in the direction of one of the surface normals. If the surfaces overlap, then the error function has a
negative value, and a positive constraint force will accelerate the surfaces apart. This acceleration is as it
should be. However, the linear system also applies forces to correct a positive error, so the same constraint
would also prevent the surfaces from separating.

The solution to this problem is to limit the amount of force available for satisfying the constraint. A
contact constraint, in particular, limits the force to be non-negative. Contact friction constraints are limited
on both sides to be proportional to the normal contact force. This limitation places upper and lower bounds
on the constraint force variable: λlo ≤ λ ≤ λhi, allowing constrained bodies to accelerate without bounds
if the force necessary to hit the acceleration target falls outside of the limits. In ODE, the result is three
possible conditions to satisfy a constraint:

7



Supplementary Materials

aiλ = wi with λi ∈ [λilo, λihi], aiλ > wi with λi = λilo, aiλ < wi with λi = λihi

where −∞ ≤ λilo ≤ 0 ≤ λihi ≤ ∞.

A linear solver cannot handle these extra conditions on the constraint forces. To solve this type of
system, physics engines employ a mixed Linear Complementarity Problem (mLCP) solver. ODE offers two
different solving methods for satisfying constraints under limited-force conditions. One method, known as
Projected-Gauss-Seidel, solves constraints iteratively and accumulates the effects (Catto, 2005). Iterative
methods tend to be faster and inaccurate when the system is near-singular or ill-conditioned. Simulated
humanoid systems, particularly with two feet on the ground, tend to behave badly with this faster solver.
The slower, pivot-based method follows the algorithm presented by Baraff (Baraff, 1994). Baraff’s method
is still easily fast enough for our purposes.

Each row in matrixA represents a constraint. The corresponding values of w and λ represent a “target”
acceleration along the degree of freedom constrained by that row and the generalized force used to achieve
it. For the ith row ofA, the diagonal element, aii, behaves like the inverse mass of the constraint. A force,
λi, imposes an acceleration of aiiλi = wi within the constraint error-space. The rest of the elements in a
row ofA encode the force’s effects on other constraint dimensions. A change in the ith constraint force λi
affects the jth constraint space by accelerating it according to δwj = aijδλi. The order of the constraints
is arbitrary, and they can be rearranged as long as every row-swap is accompanied by the corresponding
column-swap that maintains the proper symmetry.

Baraff’s solving algorithm (based on Dantzig’s simplex method) takes advantage of this arbitrary ordering
by dividing constraints into different sets: a satisfied set S, a limited set N , and an unaddressed set U . All
constraints fit into one of these categories. The first step in finding a solution is to reorder and satisfy all the
unlimited constraints without considering the rest, using a basic linear solver. The resulting system looks like

[
A11 A12

AT
12 A22

] [
λ1

0

]
=

[
w1

AT
12λ1

]
(14)

Set S holds the rows of A1i. Set U holds the rest.
Each constraint’s target conditions can be represented as
a piecewise line through force-acceleration space. We
will call this multi-segmented line the target manifold for
each constraint. Viewing constraints this way is another
contribution of this work. The diagonal element of A
associated with the constraint gives the slope of a line
through the origin that represents the relationship between force (λ) and actual acceleration (Aii is
the effective inverse-mass of the ith constraint). The solver seeks to find a joint solution so that, for all rows
ofA, the pairs of (λi, wi) fall on the acceptable manifold. Forces from other constraints move the entire
manifold up or down relative to the origin.

The β parameter takes the horizontal portion of the target manifold and tilts it so that when bigger forces
are used, there is a lower target acceleration. Hence the constraint is spring-like. The vertical portions of
the constraint represent places where the constraint has hit its force limits. That constraint can apply no
additional force, so the acceleration must be allowed to increase freely. Otherwise, the constraint would be
“obligated” to apply more force to get closer to its target acceleration.

Constraints are addressed one at a time. When dealing with ground contact force without softened
constraints, once the solver found a sufficient force to keep a body from penetrating the ground, any
remaining ground contact constraints would have nothing to do, resulting in an inappropriate distribution

8



Supplementary Materials

of ground forces. With spring-like constraints, if one contact constraint supporting a body reaches its target
force/acceleration, a second, redundant contact constraint will see whatever distance remains between the
current acceleration and the target. Forces applied by the second constraint attempting to reach its target
push the target manifold of the first constraint toward the origin. The force required to achieve the first
constraint’s target decreases until the forces balance appropriately. The balancing forces make it possible to
more accurately compute inverse dynamics forces.

The algorithm for solving the mLCP progresses through each unaddressed constraint, one at a time, and
finds the change in forces that will satisfy the new constraint without moving any of the current constraints
off their piecewise target. Each iteration of the algorithm draws a new constraint from the unaddressed
set U and addresses the change in force, λ, that will satisfy the new row without pushing any previously
addressed rows off their manifold until the new row can be added to S or N . In the process, other rows
may change between sets S and N , but each row remains on its target manifold in acceleration/force space.
Consider this partitioned matrix:

A11 A12 a13
AT

12 A22 a23
aT
13 a23 a33

λ1

λ2

0

 =

w1

v2
v3

 (15)

Adding a new force, λ3, will change
the accelerations of the other constraints.
Accelerations of constraints at their limit are
allowed to change, but those in set S must remain
at their target. So we find the δλ3 that moves
v3 toward w3 and find the simultaneous δλ1 that
keeps constraints in S satisfied. The constraint
force takes the largest step that will not push any row out of its setting. This step will either satisfy the
constraint or move another constraint to an intersection point on its manifold. We pivot the sets around and
continue until all of our rows are in S or N . For additional detail, see (Baraff, 1994).

Recognizing that the solver deals with each constraint target as a piece-wise linear manifold provides
valuable insight into how the simulation mechanism can be improved. We can make spring constraints that
get more or less stiff as additional force is required. We can also introduce constraints with “deadzones” in
their PD control. This type of constraint allows us to introduce controllers that only come into play when a
dimension of interest drifts out of an acceptable range. This type of controller takes inspiration from the
idea of “uncontrolled manifolds” in human motor control theory (Scholz and Schöner, 1999). With this
constraint acting as a controller, the controller does nothing if a perturbation will not hurt performance.

From deadzone controllers, we can introduce novel constraints with secondary targets. A constraint whose
forces and accelerations fall within acceptable tolerances has the flexibility to “help” another constraint
that has reached its limit. For example, we can specify a target range for the knee, hip, and ankle joints
of a simulated character. When these leg joints fall within their stated ranges, they can be allowed to
pursue a secondary goal, such as keeping the torso upright or at a given height. This type of constraint can
serve as a method for reducing the need for unrealistic residual forces. Removing residual forces implies
deviating from original kinematic data. Constraints with secondary targets make it intuitive and clear how
this deviation will occur can be extremely beneficial when using the simulation engine for analyzing and
synthesizing movement data. We have created and submitted code for allowing controller constraints with
a deadzone in acceleration space. 1

1 Full implementation of secondary targets for constraints is still in progress. It promises to help create intelligent constraint-based controllers.

9



Supplementary Materials

S2 Appendix: Model dimensions determination based on marker data
The model consists of nb rigid bodies connected by nj joints. In this case, each joint consists of three

to five constraints. Each joint connects two rigid bodies with anchor points (center of rotation) defined
in the reference frame of both bodies. The joint constraints keep the anchor points relative to the two
bodies together in the global frame. If bodies bj and bk are connected, a joint constrains them together
at a common point. The joint anchor relative to body bj is c̃jk. The anchor for body bk is c̃kj . The joint
constraint drives these points together in the global frame, creating three constraint rows:

φjk = Rj c̃jk + xj −Rkc̃kj + xk (16)

The locations of these anchor points determine
the segment dimensions (bone lengths) of the
character model. Markers, each assigned to a
specific rigid segment, represent a point on the human body. We seek anchor points that allow markers
to remain approximately stationary relative to their assigned body segment. It is generally impossible to
precisely find such a configuration (without creating an unreasonable number of body segments) because
of soft-tissue artifacts (STAs). Skin and joints are not rigid. They stretch and give as muscles pull the bones.
Modeling the body in maximal coordinates provides a way to model STAs explicitly.

Given a pre-defined model topology and markers assigned to specific model segments, we seek to find
the joint anchor points between segments and the marker attachment points relative to the model segments.
If the ith marker is assigned to the jth rigid body (pi → bj) at relative point s̃ij , we model the marker’s
attachment as a three dof constraint: φij = pi −Rj s̃ij − xj

The process models markers from an arbitrary point in time as infinite point masses. As bodies of infinite
mass, constraint forces do not affect the markers’ trajectories but only the bodies they are anchored to.

Initially, markers are anchored at s̃ij =

00
0

. This mapping attaches the marker to body bj’s center of

mass.

This mapping is a very rough estimate of the marker attachment points on the model segments, but
it is sufficient because of the flexible nature of constraints in the simulation software. Setting the CFM
parameter of the marker constraints to β = 10−3 and setting the model joint constraint CFM to β = 10−5

makes the body segments hold together tightly while still allowing the markers to pull the body into shape.
Several timesteps of simulation allow the model to relax to a fixed pose. We then take the markers in their
current configuration and reattach them to their respective segments. Relaxing the marker attachments
this way improves the fit for this particular frame of marker data. Iteratively repeating this process with
multiple frames of marker data, we after that update the marker attachment points by some learning rate,
ηm: s̃′ij = (1− ηm)s̃ij + ηmR

T
j (pi − xj). Gradually updating attachment points, using different frames

of data, effectively descends the error gradient of the marker positions relative to the body:

min
s̃

T∑
t=1

nm∑
i=1

‖pi −Rj s̃ij − xj‖

The decrease in marker error is affected by model dimension error. Conveniently, joint anchor constraints
behave the same as the marker attachment constraints. With an arbitrary frame of marker data and using a
marker CFM of β = 10−4, if the markers constraints cannot be satisfied, they will pull the joint anchors
apart slightly. We find a new common anchor point in the global frame for each joint by taking the average

10



Supplementary Materials

between the two unsatisfied anchor points that the joint constraint is trying to pull together. We then move
the anchor points toward that point according to learning rate ηl:

c̃′jk = (1− ηl)c̃jk + ηlR
T
j

(
Rk c̃kj + xk − xj

)
For any frame, errors will cause the markers to stretch from their attachment points and joint anchor

points to stretch apart from each other. Both marker attachment points and the joint anchors can be updated
simultaneously to decrease the error for that frame. However, the local solution that perfectly satisfies
one frame may make another frame worse. This step presents an evident gradient descent approach to
finding the joint anchors and marker attachments: using several frames, compute an average adjustment to
the marker attachments and joint anchors that reduce the error, make the adjustment to both anchors and
attachments, and then iterate.

REFERENCES

1.2.3.Baraff, D. (1994). Fast contact force computation for nonpenetrating rigid bodies. In Proceedings of the
21st annual conference on Computer graphics and interactive techniques. 23–34

Baumgarte, J. (1972). Stabilization of constraints and integrals of motion in dynamical systems. Computer
methods in applied mechanics and engineering 1, 1–16

Buss, S. R. (2000). Accurate and efficient simulation of rigid-body rotations. Journal of Computational
Physics 164, 377–406

Catto, E. (2005). Iterative dynamics with temporal coherence. In Game developer conference. vol. 2
Featherstone, R. (2014). Rigid body dynamics algorithms (Springer)
Grassia, F. S. (1998). Practical parameterization of rotations using the exponential map. Journal of graphics

tools 3, 29–48
Lanczos, C. (2020). The variational principles of mechanics (University of Toronto press)
Scholz, J. P. and Schöner, G. (1999). The uncontrolled manifold concept: identifying control variables for

a functional task. Experimental brain research 126, 289–306
Smith, R. (2005). Constraints in rigid body dynamics. Game Programming Gems 4, 241–251
Smith, R. et al. (2005). Open dynamics engine

11


