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1 GENERAL ANALYTICAL SOLUTION OF THE 1D CONTINUOUS MODEL
In order to solve Equation (8), we separate the xylem water potential into a static part and a time-dependent
part, ψpx, tq “ ψupxq ` ψtpx, tq, where the two parts satisfy:

B2ψu
Bx2

“
R

Ra
ψu ´

Rψa
Ra

(S1)
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R

CRcRa
ψt. (S2)

Given the boundary conditions ψupx “ 0q which is a constant and Ipx “ 1q “ 0, the time-independent ψu
is solved as:

ψupxq “
ψup0q ´ ψa
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a

R{Raq
exp

´

c

R

Ra
x
¯

`
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a
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´

´
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R
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x
¯

` ψa. (S3)

The time-dependent ψt can be solved through a Fourier transform of the water potential ψ̃tpx, ωq “
1{
?

2π
ş

dt e´iωtψtpx, tq (Asmar, 2005) which satisfies:

iω
B2ψ̃t
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“ iωR
´ 1

Ra
`
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¯
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1

CRc

B2ψ̃t
Bx2

`
R

CRcRa
ψ̃t (S4)

whose solution is
ψ̃tpx, ωq “ αpωq exppκpωqxq ` βpωq expp´κpωqxq (S5)

κpωq “

d

iωCRpRc{Ra ` 1q `R{Ra
1` iωCRc

(S6)

where the functions αpωq and βpωq can be determined by given boundary conditions ψtpx “ 0, tq and
Ipx “ 1q “ 0. If ψpx “ 0q “ ψ0 is time-independent, ψtpx “ 0, tq “ 0 and the water status will stay in
the steady state ψu described by Equation (S3). The steady-state average potential in the xylem is:

ψ̄ “

ż 1

0
dxψupxq “ I0Ra ` ψa (S7)

where I0 “ Ipx “ 0q is the current entering through the base:

I0 “ ´
1

R

Bψu
Bx

∣∣∣∣
x“0

“
expp2

a

R{Raq ´ 1

expp2
a

R{Raq ` 1
¨
ψup0q ´ ψa
?
RRa

(S8)

which is equal to the total transpiration current E at steady state.
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2 ANALYTICAL SOLUTION OF THE 1D CONTINUOUS MODEL WITH AN
OSCILLATING WATER POTENTIAL AT BASE

In a uniform, continuous, one-dimensional model described by Equation (8), we solved its steady-state
water potential distribution ψupxq in Equation (S3). Here we present the solution of an oscillating boundary
condition ψtpx “ 0, tq “ A cospω0t` ϕq, whose Fourier transform is:

ψ̃tpx “ 0, ωq “ A

c

π

2
reiϕδpω ´ ω0q ` e

´iϕδpω ` ω0qs (S9)

where δ is the Dirac delta. From the form of solution ψ̃tpx, ωq “ αpωq exppκpωqxq ` βpωq expp´κpωqxq
in Equation (S5), we have the following boundary conditions: αpωq ` βpωq “ A

a

π{2reiϕδpω ´ ω0q `
e´iϕδpω ` ω0qs and βpωq expp´κpωqq ´ αpωq exppκpωqq “ 0, the latter of which is derived from the fact
that I “ ´p1{RqBψ{Bx and Ipx “ 1q “ 0. The functions α and β are solved to be:

αpωq “ A

c

π

2

eiϕδpω ´ ω0q ` e
´iϕδpω ` ω0q

1` expp2κpωqq
(S10)

βpωq “ A

c

π

2

eiϕδpω ´ ω0q ` e
´iϕδpω ` ω0q

1` expp´2κpωqq
. (S11)

We substitute the expressions into ψ̃tpx, ωq, which can be inversely transformed into the real time (ψt “
1{
?

2π
ş

dω eiωtψ̃t):

ψtpx, tq “
A

2

!

eipω0t`ϕq
„

exppκpω0qxq

1` expp2κpω0qq
`

expp´κpω0qxq

1` expp´2κpω0qq



` e´ipω0t`ϕq
” exppκp´ω0qxq

1` expp2κp´ω0qq
`

expp´κp´ω0qxq

1` expp´2κp´ω0qq

ı)

(S12)

where function κpωq “
a

riωCRpRc{Ra ` 1q `R{Ras{p1` iωCRcq as in Equation (S6). The total water
potential distribution is then ψpx, tq “ ψupxq ` ψtpx, tq (Equations (S3)+(S12)).

3 ANALYTICAL CALCULATION OF A UNIFORM XYLEM NETWORK REMOVED
FROM PLANT

We consider a uniform, continuous xylem model which is at the steady state (Equation (S3)) when t ă 0,
and is removed from base water source when t “ 0. A closed end immediately forms at x “ 0 which
is similar to the terminal at x “ 1. In Figure 1 at the first node i “ 1 of the network, I0,1 becomes zero
instantly and we have I1,2 ` I

paq
1 ` I

pcq
1 “ 0, which means BI1,2{Bt “ ´BI

paq
1 {Bt´ BI

pcq
1 {Bt and that:

BI1,2
Bt

“ ´

´ 1

Ra
`

1

Rc

¯

Bψ1

Bt
∆x´

1

CRc

´

I1,2 `
ψ1 ´ ψa
Ra

∆x
¯

. (S13)

At the continuous limit, ∆x Ñ 0 and I1,2 Ñ Ipx “ 0q, and the equation becomes BIp0q{Bt “
´Ip0q{pCRcq. Along with the initial condition Ipx “ 0, t ă 0q “ I0 in Equation (S8), we obtain:

Ipx “ 0, tq “ I0 ´ I0

´

1´ expp´
t

CRc
q

¯

Hptq (S14)
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where H is the Heaviside step function. This equation shows that the current at x “ 0 does not become
zero instantly because of the existence of capacitance. The time-dependent part of Ipx “ 0, tq is Itpx “
0, tq “ ´I0r1´ expp´t{pCRcqqsHptq, whose Fourier transform is:

Ĩtpx “ 0, ωq “ ´I0

c

π

2

´

δpωq `
1

iπωpiωCRc ` 1q

¯

. (S15)

From I “ ´p1{RqBψ{Bx and Ipx “ 1q “ 0, we can calculate the Fourier transform of the time-dependent
part of xylem water potential ψ̃tpx, ωq “ αpωq exppκpωqxq ` βpωq expp´κpωqxq in which:

αpωq “ ´

c

π

2

I0R

κpωqrexpp2κpωqq ´ 1s

´

δpωq `
1

iπωpiωCRc ` 1q

¯

(S16)
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c

π

2

I0R

κpωqr1´ expp´2κpωqqs

´

δpωq `
1

iπωpiωCRc ` 1q

¯

. (S17)

The xylem water potential distribution in the real time is not analytically solvable. However, we can
instead calculate the time-dependent part of the average xylem potential, whose Fourier transform is:

ψ̃avgpx, ωq “

ż 1

0
dx ψ̃tpx, ωq “ ´

c

π

2

I0p1` iωCRcq

iωCpRc{Ra ` 1q ` 1{Ra

ˆ

δpωq `
1

iπωpiωCRc ` 1q

˙

. (S18)

The inverse Fourier transform gives

1
?

2π

ż

dω eiωtψ̃avgpx, ωq “ ´
I0Ra

2
´ I0Ra

”

1´ exp
´

´
t

CpRc `Raq

¯ı

Hptq. (S19)

Because of the continuity of ψ̄ at t “ 0, which is equal to its steady-state value in Equation (S7), the
average xylem potential in real time is:

ψ̄ “ ψa ` I0Ra ´ I0Ra

”

1´ exp
´

´
t

CpRc `Raq

¯ı

Hptq (S20)

and the total transpiration current is calculated as:

E “

ż 1

0
dx

ψpx, tq ´ ψa
Ra

“
ψ̄ ´ ψa
Ra

“ I0 ´ I0

”

1´ exp
´

´
t

CpRc `Raq

¯ı

Hptq. (S21)

Both equations result in Expressions (10) and (11) when t ą 0.
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4 THE LUMPED MODEL AND ITS PARAMETER SELECTION
We compare the basic functions of the one-dimensional model in Figure 1 (left) with those of the lumped
model in Figure 2 (right):

I0,1 “
ÿ

i

I
paq
i `

ÿ

i

I
pcq
i Ix “ Ia ` Ic (S22)

ψ0 ´ ψN “
ÿ

i

Ri´1,iIi´1,i ψp ´ ψx “ RxIx (S23)

ψ̄ ´ ψa “

ř

iR
paq
i I

paq
i

N
ψx ´ ψa “ RaIa (S24)

ψ̄ ´ V̄ ´ ψs “

ř

iR
pcq
i I

pcq
i

N
ψx ´ V ´ ψs “ RcIc (S25)

where ψ̄ “
ř

i ψi{N and V̄ “
ř

i Vi{N . We investigate the equivalence of the two sets of equations by
defining Ix “ I0,1, Ia “

ř

i I
paq
i , Ic “

ř

i I
pcq
i , ψx “ ψ̄ and V “ V̄ . In Subsection 2.2, for a uniform one-

dimensional network where circuit elements are evenly distributed, we have defined Ra and Rc as grouped
elements for the whole system, and these definitions will make the equations in (S22), (S24) and (S25)
equivalent. To make the equations in (S23) also equivalent, we study how Rx is related to R “

ř

iRi´1,i.
We already defined ψp “ ψ0, and here we use the steady state of a uniform 1D model that was calculated
in Subsection 2.2 to compare the left hand sides of the equations, which are ψupx “ 0q ´ ψupx “ 1q and
ψupx “ 0q ´ ψ̄ in the 1D model. We estimate their comparison by doing:

ψupx “ 0q ´ ψupx “ 1q

ψupx “ 0q ´ ψ̄
“

1` expp2
a

R{Raq ´ 2 expp
a

R{Raq

1` expp2
a

R{Raq ´
a

Ra{Rpexpp2
a

R{Raq ´ 1q
«

3

2
. (S26)

The typical outside-xylem resistance is larger than the resistance in the xylem, i.e. Ra Á R, and we obtain
the approximate ratio 3{2. To compare the right hand sides, which in the uniform model are RĪ where
Ī “ pψpx “ 0q ´ ψpx “ 1qq{R and RxIx where Ix “ I0, we estimate the ratio:

Ī

Ix
“

c

Ra
R

expp
a

R{Raq ` expp´
a

R{Raq ´ 2

expp
a

R{Raq ´ expp´
a

R{Raq
«

1

2
(S27)

provided that Ra Á R. Combining the two pairs of comparisons, we found that for equations in (S23) to be
compatible with each other, we could have Rx “ R{3 which is 1{3 the total xylem resistance from base to
tip.

The lumped model in Figure 2 is described by the dynamic equation:

p
1

Ra
`

1

Rx
`

1

Rc
q
Bψx
Bt

“ ´
1

CRc
p

1

Ra
`

1

Rx
qψx `

1

CRc
p
ψa
Ra
`
ψp
Rx
q (S28)

whose solution for ψx is:

ψx “

ψa
Ra
`

ψp

Rx

1
Ra
` 1

Rx

`D exp

˜

´

1
CRc

p 1
Ra
` 1

Rx
q

1
Ra
` 1

Rx
` 1

Rc

t

¸

(S29)
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where the first part is the steady state and the second part is the dynamics, where the parameter D is the
difference between the initial state and the steady state. The time constant becomes τ “ CpRc `Raq if the
model describes a leaf removed from plant (Rx Ñ 8), the same result as in the uniform network model
(Subsection 2.2).

5 SUPPLEMENTARY THEORETICAL MODELING RESULTS OF UNIFORM GRASS
LEAVES WITH CONSTANT PARAMETERS
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Figure S1: The time dependence of average xylem potential when a living, uniform model leaf in steady
state is removed from plant and water source is closed at the base. The 1D simulation results match
the analytical exponential decay expressions, with time constants τ “ CpRc ` Raq. The assumption of
constant stomatal resistance (and constant Ra), which leads to very negative ψ̄ in the long term, is highly
hypothetical, but is helpful for theoretical investigation. The temporal variations of total transpiration rate
are similar. Various sets of whole-leaf capacitance C and xylem-to-capacitor resistance Rc values are used,
while other parameters are the same as those in Figure 3 in the main text.
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Figure S2: The dependence of total transpiration rate E on average xylem water potential ψ̄ in the modeling
of an excised leaf. The decrease of E is induced by the lowering of ψ̄ because of open stomata and constant
transpiration resistance Ra. Parameters are the same as those in Figure 3 in the main text.
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Change of total transpiration current through stomata

Figure S3: The time dependence of total transpiration rate through stomata, when ψa is instantly increased
from´100 MPa to´50 MPa (A) where the air is wetted and VPD is decreased from 1.64 kPa to 0.965 kPa,
or decreased from ´100 MPa to ´150 MPa (B) where the air is dried and VPD is increased from 1.64 kPa
to about 2.1 kPa. Various sets of C and Rc values are used, while other parameters are the same as those
in Figure 3 in the main text. In both situations, the time constants τ corresponding to the same C and Rc
values are identical as labeled in the legend. Note that in both (A) and (B) the original transpiration rate at
t ă 0 is E “ 1.97 mmol ¨m´2 ¨ s´1, which undergoes an instant change at t “ 0 and then slightly changes
in an exponential way when t ą 0.
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6 SUPPLEMENTARY MEASUREMENTS OF THE SPATIAL DISTRIBUTION OF
WATER CONTENT ALONG A. VILLOSA LEAF BLADES
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Figure S4: Raw data of local water amount measurements for six A. villosa leaves under light treatment.
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Figure S5: Raw data of local water amount measurements for six A. villosa leaves under dark treatment.
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Figure S6: Raw data of local water amount measurements for six A. villosa leaves under dark + 1 hour
equilibrium treatment.
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Figure S7: The combined measurement results of A. villosa leaves under three different treatments. Error
bars represent standard deviations. A more even distribution in leaves in darkness and a tapering trend from
base to tip in leaves exposed to light are observed. The leaves equilibrated for an extra hour after excision
do not show statistically significant difference from dark treatment results. The three data sets are plotted
with a horizontal shift of 0.01 to show error bars.

REFERENCES

Asmar, N. H. (2005). Partial Differential Equations with Fourier Series and Boundary Value Problems
(Pearson Prentice Hall), 2nd edn.

8


	General analytical solution of the 1D continuous model
	Analytical solution of the 1D continuous model with an oscillating water potential at base
	Analytical calculation of a uniform xylem network removed from plant
	The lumped model and its parameter selection
	Supplementary theoretical modeling results of uniform grass leaves with constant parameters
	Supplementary measurements of the spatial distribution of water content along A. villosa leaf blades

