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Supplemental Methods 

 

Two-class bootstrap simulation  

The primary objective of selecting SEM in our research and fundamental advantage of SEM is to 

allow researchers to derive the relationship between variables of interest when these variables are 

not directly measurable. In the proposed SEMIPs method, we tested the relationship via a 3-node 

SEM model among three variables in a complex genomic system. Each of these variables can 

either be a regulator that regulates a group of downstream genes or a readout of impact from 

some upstream regulator. The a two-sided t-statistic, naminglyT-scores are calculated based on 

the direction of these upstream/downstream signatures(genes), and then used in the SEM 

modeling. 

 

When we have a group of signatures (genes) obtained from an experiment (i.e. a KEGG pathway 

analysis in our paper, data comes with the SEMIPs application at “/app_installation_dir 

/testData/bootstrap/”), we are interested in finding out whether a regulator 

(upstream/downstream) is associated with a factor (i.e. GATA2 in our example) in our SEM 

model. We chose to eliminate these group of signatures (genes) from the GATA2-related 

signatures. To provide an unbiased assessment of such analysis, we implemented a two-class 

bootstrap simulation method “elimination with replacement and elimination without 

replacement” (Figure 3). 

 

In an elimination without replacement bootstrap analysis, it randomly eliminated the same 

number of signatures from this originate GATA2-related signatures, then re-calculate the T-score 



and re-evaluate the SEM model. In the paper, we suggest a 1,000 round of simulation to provide 

an empirical distribution for any non-parametric statistics test. On the other hand, in the 

elimination with replacement bootstrap analysis, after randomly eliminating the same number of 

signatures from this originate GATA2-related signatures, we replace the same number of 

“irrelevant” signatures back to the “shrunken” list. Then, we re-calculate the T-score and re-

evaluate the SEM model, we also suggest a 1000 round of simulation to provide an empirical 

distribution for any non-parametric statistics test. 

 

The elimination without replacement simulation was used to test whether a regulator has any 

impact on our factor (i.e. GATA2) in term of function association; and the elimination with 

replacement simulation was used to rule out the possibility that the number of downstream 

signatures of a factor (i.e. GATA2) has any impact on its function. Both empirical distributions 

serve as the null hypothesis for the statistical testing. 

 

Gene list preparation 

The microarray gene expression data was analyzed using The Partek Genomics Suite 7.17 

software (Partek Inc., St. Louis, MO). The Robust Multichip Analysis (RMA) algorithm with 

quantile for normalization and log2 transformation was applied to generate gene expression 

values of all samples. The one-way analysis of variance (ANOVA) model was used to compare 

expression profiles from different groups. Differentially expressed genes (DEGs) were identified 

using the filters of ANOVA unadjusted p value < 0.01 and absolute fold change >1.3. 

 



The published GATA2 occupancy information GEO accession: GSE40659 (Rubel et al. 2016) 

was first lifted from mm9 to mm10 genome assembly and then annotated by HOMER (Heinz et 

al. 2010) for the nearby genes. The obtained GATA2 ChIP-seq targets were mapped to the 

GATA2 signature from microarray data to identify the putative GATA2 direct downstream 

targets (GATA2 direct signature - Supplemental Table 1). The criteria used to selected GATA2 

ChIP-seq targets was GATA2 binding at immediate promoter regions (+/-2kb of TSS). 

 

The main steps to follow the use case example 

Step 1. To get the T-score: Users can launch the App and import the 634 genes list 

(Supplemental Table 1) and HumanArray4Shiny comes with the App. By clicking the green 

“Go” button, the corresponding T score will then be calculated and can be download (shown in 

Supplemental Figure 1). We also provided this calculated T-score in Supplemental Table 2. 

 

Step 2. To construct the dataset: Users need to open the _sampleDAT.txt under the 

“app_installation_dir/dataSEM/”, i.e. /Users/li11/myGit/SEMIPs/dataSEM, append the new T -

Score column from step 1 and name the header accordingly. We use “GATA2 Direct” in this use 

case. Please save the new file as “app_installation_dir/dataSEM/sampleDAT.txt”. 

 

Step 3.  To run the SEM model: Users need to re-launch the app. Under the SEM tab, from the 

drop-down list select “GATA2 Direct”, “PGR_act_FC13_P01”, and “SOX17_lev” as show in 

Supplemental Figure 2. Then the structural equation model will be fitted accordingly. User can 



download the 3-node SEM image as well as the model fitting details as shown in Supplemental 

Figure 2. 

 

 

Supplementary Figure 1. An illustration for using the App to calculate T-score for 

Supplemental Table 1.  



 

Supplementary Figure 2. An illustration for using the App to fit the structural equation model 

for Supplemental Table 2 (GATA2 direct gene list). The fitting statistics can be downloaded by 

clicking the “Download Results” button. 
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