
   

Supplementary Material 

1 Appendix A: Development and test sets: 

The development and test sets are shown in Table S1 and Table S2, respectively, with parameter values 

listed for each simulation. As observed in the tables, we observed several valve and flow parameters, 

such as valve area (through leaflet stiffness), leaflet mapping function, stroke volume and flow profile. 

The peak anatomic orifice area (AOA) in every case is larger than 1.5 cm2, ensuring stenosis severity 

is at worst mild. 

2 Appendix B: Linear Discriminant Analysis: 

We use linear discriminant analysis (LDA), as described by Kutz (Kutz 2013), as the classification 

algorithm for detecting anomalous valve function. LDA is a dimensionality reduction technique which 

seeks to find an optimal projection vector ‘�⃗⃗� ’, such that when the original binary class dataset is 

projected on to this vector (thus reducing its dimensionality to 1), class separability is maximized. This 

can be visualized using a sample two-dimensional dataset, illustrated in Figure S1 (a). The blue dots 

represent the distribution of Healthy valves while the red dots represent that of the Stenotic valves. 

Additionally, three projection vectors, along with the corresponding projections of the dataset, are 

shown in Figure S1 (b), (c) and (d), as examples of “bad”, “good” and “optimal” class separability, 

respectively. Through these images, it is easy to intuitively understand what optimal projection 

requires: Maximal class separation and, simultaneously, tight within-class clustering. Mathematically, 

class separability is quantified using the Fisher Discriminant Ratio (𝐽(�⃗⃗� )), defined as follows: 

 𝐽(�⃗⃗� ) =
(𝜇𝐻 − 𝜇𝑆)(𝜇𝐻 − 𝜇𝑆)

𝑇

∑ (�̃�𝑖 − 𝜇𝐻)(�̃�𝑖 − 𝜇𝐻)
𝑇

𝑖∈𝐻 + ∑ (�̃�𝑖 − 𝜇𝑆)(�̃�𝑖 − 𝜇𝑆)
𝑇

𝑖∈𝑆

 (S1) 

In equation (S1), 𝜇𝐻 and 𝜇𝑆 denote the mean value of the Healthy and Stenotic classes when the given 

dataset is projected on to the vector �⃗⃗� . �̃�𝑖 is the projection of the ith class from the original dataset on 

to �⃗⃗� . Thus, the numerator can be understood as the squared distance between the mean values of the 

two classes under projection on to �⃗⃗� , or more generally, the between-class scatter (SB). This quantity 

represents how far apart the class means move under LDA projection. On the other hand, the 

denominator can be understood as the sum of within-class scatter (SW) for the two classes. Each term 

in the denominator is proportional to the variance of the corresponding class about its mean, under 

LDA projection.  

Thus, finding optimal class separation is equivalent to finding a vector �⃗⃗�  which maximizes this ratio, 

and is determined as the solution to the following generalized eigenvalue problem:  

 𝑺𝐵�⃗⃗� = 𝜆𝑺𝑤�⃗⃗�  (S2) 
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where 𝑺𝐵 and 𝑺𝑊 are matrices corresponding to the between-class and within-class scatter for the 

original dataset. The optimal �⃗⃗�  is given by the eigenvector corresponding to the largest eigenvalue 

λmax.  

3 Appendix C: Synthetic Minority Oversampling Technique (SMOTE): 

This technique is commonly employed in statistical analysis when training a machine learning 

algorithm on an unbalanced dataset, i.e. objects in one class outnumber those in the other, can risk 

introducing bias in the algorithm’s predictions. SMOTE helps to oversample the minority class and 

generate sufficiently many instances of the class in a given feature space, such that the dataset is then 

balanced. The methodology is illustrated for a sample two-dimensional dataset in Figure S2 (a).  

To generate additional samples, a random instance from the minority class is selected, hereafter 

referred to as “central instance” (circled), and its ‘k’-nearest neighbors determined (blue circles within 

larger blue shaded circle). Then, for each neighbor, a minority class instance is synthesized as a random 

convex combination of the central instance and the neighbor, shown using green stars. This process is 

repeated, each time with a new central instance, until the datasets are balanced.  

In our case, since dataset balancing is performed before principal components are calculated, each time 

sample is treated as an independent feature. For a central instance ‘i’ and a generic neighbor ‘j’, a 

distance metric (equation (S3)), calculated as the squared norm of the difference between their 

measured surface acceleration signals, is tested to determine its ‘k’ nearest neighbors. The resulting 

balanced dataset is illustrated in Figure S2 (b).   

 𝑑𝑖,𝑗 = ∫(𝑎 𝑖 − 𝑎 𝑗)
2
𝑑𝑡

𝑇

0

 (S3) 

4 Appendix D: Parameter tuning via Cross-Validation: 

The primary model parameter for the PCA-based linear discriminant analysis classifier is the number 

of PCA modes, P. As described in section 3.4, this may be achieved by arbitrarily fixing the amount 

of explained variance in the reduced dataset. Another way, which also gives an a priori estimation of 

the predictive accuracy of the classifier is via K-fold cross-validation. This method is outlined as 

follows: 

1. Randomly shuffle the development dataset. 

2. Split the dataset into ‘K’ groups. The first two steps are done using the Python Scikit-Learn’s 

KFold model selection library. One group is set aside for validation (or testing), while the 

remaining K-1 are used for model training.  

3. Train the LDA classifier using the K-1 groups using different possible values of P and evaluate 

its performance on the remaining validation group. Classification error is assessed as: 𝐶𝐸 =
 (𝐹𝑃 + 𝐹𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄ , where TP, FP, FP, and FN represent the number of true 

positives, true negatives, false positives, and false negatives incurred on a given training or 

validation set. 

4. This process is repeated using every group for validation and the remaining K-1 for training. 
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5.  For a given P, the average classification error on a given dataset is calculated as the average 

error over all tested combinations of simulations used for that dataset. 

The trends of mean classification error on the training and validation sets as the number of PCA 

modes ‘P’ is varied are illustrated in Figure S3. The training error generally shows a monotonic 

decrease as ‘P’ is increased, and eventually decreases to zero, indicating the classifier contains all 

the information required for classification on the training set. On the other hand, the mean 

validation error first decreases between 6 < 𝑃 < 14, then increases for 𝑃 > 19, which coincides 

with the region where the mean training error is zero. This indicates the classifier is now overfit to 

the training set and loses generalization accuracy on new instances. Thus, optimal classification 

occurs when the mean validation error is minimal, at 𝑃 = 19. 
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Figures: 

 

Figure S1: Schematic representation of the linear discriminant analysis procedure using a sample two-

dimensional dataset, showing (a) the dataset, and projections of the dataset on vectors (shown in black) 

resulting in (b) poor, (c) good and (d) optimal classification. 
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Figure S2: (a) Illustration of SMOTE for a sample two-dimensional dataset. (b) Complete development 

set showing 29 signals from simulations (blue: Healthy, red: Stenotic) and 15 synthesized Healthy 

signals (green). 
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Figure S3: Mean classification error, with varying number of PCA modes, obtained on the training and 

validation sets. 
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Tables: 

Simulation 
Valve 

State 

Simulation Parameter 

Peak AOA  

[cm2] 
% Stenosis Mapping Stroke Volume 

[ml] 
Flow profile 

1 Healthy 4.154 0.00 Linear 60 Centered 

2 Healthy 4.154 0.00 Power 60 Centered 

3 Healthy 4.154 0.00 Power 72 Centered 

4 Healthy 3.739 9.99 Linear 60 Centered 

5 Healthy 3.741 9.96 Linear 72 Centered 

6 Healthy 3.741 9.96 Linear 60 Eccentric 

7 Healthy 3.408 17.97 Power 60 Centered 

8 RLM1 3.246 21.87 Linear 60 Eccentric 

9 RLM1 3.246 21.87 Linear 60 Centered 

10 RLM1 3.322 20.02 Linear 72 Centered 

11 RLM1 2.910 29.97 Linear 60 Centered 

12 RLM1 3.038 26.87 Power 60 Centered 

13 RLM1 2.572 38.08 Power 60 Centered 

14 RLM1 2.546 38.73 Power 60 Centered 

15 RLM1 2.376 42.80 Power 60 Centered 

16 RLM2 2.869 30.93 Linear 60 Centered 

17 RLM2 3.024 27.20 Linear 72 Centered 

18 RLM2 2.810 32.37 Power 60 Centered 

19 RLM2 1.900 54.25 Power 60 Centered 

20 RLM2 2.165 47.89 Power 60 Centered 

21 RLM2 2.131 48.72 Power 60 Centered 

22 RLM2 1.941 53.27 Power 60 Centered 

23 RLM2 1.865 55.12 Power 60 Centered 

24 RLM3 2.046 50.75 Power 60 Centered 

25 RLM3 2.014 51.52 Power 60 Centered 

26 RLM3 1.937 53.39 Power 60 Centered 

27 RLM3 1.889 54.53 Power 60 Centered 

28 RLM3 1.847 55.55 Power 60 Centered 

29 RLM3 1.732 58.31 Power 60 Centered 

Table S1: Simulation parameters for the development set 
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Simulation Valve 

State 

Simulation Parameter 

Area [cm2] % Stenosis Mapping Stroke Volume Flow profile 

1 RLM1 2.968 20.66 Power 60 Centered 

2 RLM1 2.477 33.78 Power 60 Centered 

3 RLM2 2.794 25.31 Power 60 Centered 

4 RLM2 2.328 37.77 Power 60 Centered 

5 RLM2 2.208 40.96 Power 60 Centered 

Table S2: Simulation parameters for the test set 

 

 


