# Supplementary Material

# **Specific Heat Capacity of Confined Water in Extremely Narrow Graphene Nanochannels**

Runfeng Zhou, Xinyi Ma, Haoxun Li, Chengzhen Sun\*, Bofeng Bai

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University,

Xi'an, 710049, China

\*Corresponding author. Email: <a href="mailto:sun-cz@xjtu.edu.cn">sun-cz@xjtu.edu.cn</a>

#### **Content**

| 1. | Independence checks                                            | 2   |
|----|----------------------------------------------------------------|-----|
|    |                                                                |     |
| 2. | Density Distribution                                           | 5   |
|    |                                                                |     |
| 3. | Radial Distribution Function $g(r)$                            | 6   |
|    |                                                                |     |
| 4  | High $n_{\rm bhond}$ in the nanochannel of $H = 1.4  \sigma$ . | . 7 |

### 1. Independence checks



Figure S1 Independence check for box size. A box size of about  $40 \times 40 \text{ Å}$  is precise enough to eliminate the boundary effects.



**Figure S2 Independence check for number of water molecules.** The specific heat capacity is not sensitive to the number of water molecules.



**Figure S3 Independence check for relaxation time.** Both temperature and internal energy of the simulation system converge fast. Thus, a relaxation time of 1.1 ns is long enough to reach an equilibrium state.



**Figure S4 Independence check for accuracy of PPPM.** A convergence accuracy of 10<sup>-4</sup> of PPPM is precise enough to match the experimental value of specific heat capacity of bulk water and thus is chosen in this work.



**Figure S5 Independence check for sampling time.** A sampling interval of 100 fs is precise enough to match the experimental value of specific heat capacity of bulk water and thus is chosen in this work.



**Figure S6 Independence check for simulation time.** A simulation time of 5 ns is long enough to match the experimental value of specific heat capacity of bulk water and thus is chosen in this work.

#### 2. Density Distribution



Figure S7 Density distributions of water in nanochannels. Water forms as layers in nanochannels where a density peak corresponds to a water layer. The number of water layer can be the same at different channel heights within a certain range but the distance among them are difference. Thus, the properties of water including  $c_v$  oscillate on local.

#### 3. Radial Distribution Function g(r)



Figure S8 Radial distribution function  $g_{\text{O-O}}(r)$  of water molecules (take oxygen as example) in nanochannels. The negative relationship between  $c_{\text{v}}$  of water confined in different nanochannels and the first peak of  $g_{\text{O-O}}(r)$ , namely,  $g_{\text{O-O}}(r)_{\text{max}}$  in the inset, explain the size-dependent  $c_{\text{v}}$  of nanoconfined water. And the local highest  $g_{\text{O-O}}(r)_{\text{max}}$  generally corresponding to the local lowest  $c_{\text{v}}$  explains the commensurability of  $c_{\text{v}}$ .

## 4. High $n_{\rm hbond}$ in the nanochannel of $H=1.4~\sigma$



Figure S9 Special structure of confined water in channel of  $H = 1.4 \sigma$ . Generally,  $n_{\rm hbond}$  in nanoconfined water are lower than the bulk value. However, in the channel with height of  $1.4 \sigma$ ,  $n_{\rm hbond}$  is abnormal and extraordinarily high, reported as  $3.45016 \pm 0.04807$ , causing by its special structure, which allows water molecules connecting with hydrogen bonds sufficiently.