
   

Supplementary Material 

1. Supplemental Methods 

1.1.Adaptive multiple importance sampling: the proposal distribution 

In order to increase stability and decrease the heterogeneity in sample weight, we first applied 

collapse prevention measures to the definition of proposal distribution. Second, we applied a 

transformation to draw samples along the principle components. Third, we applied the k-means 

clustering algorithm to generate smaller proposal distributions.  

1.1.1. Proposal distribution and collapse prevention  

Collapsed proposal distributions result in relatively high 𝑞(𝜃) values and low weights 𝑤. This means 

that the samples drawn from a collapsed proposal distribution will not contribute to the final 

distribution unless the total number of samples go to infinity. Collapsed proposal distributions should 

therefore be prevented. Each iteration, the proposal distribution 𝑞𝑖(𝜃) is based on the weights 𝑤 of 

the drawn samples of all previous iterations1. To prevent the proposal distribution from collapsing, 

we propose a history based sample weight 𝑤 (𝛾) ∝ 𝑤𝛾 obtained with a power-law transformation and 

normalized such that ∑𝑤 (𝛾) = 1. To ensure a sufficient effective sample size, 𝛾 was set such that the 

effective sample size is at least 10 times the number of parameters. 

 𝛾 = MIN(𝛾|𝑛𝑒𝑓𝑓(𝑤(𝛾))=10⋅𝑛𝜃
, 1) (S1) 

In the extreme of 𝛾 → 0, each sample has an equal sample weight of 𝑤𝑠𝑎𝑚𝑝𝑙𝑒
(𝛾) = 1/𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and for 

𝛾 = 1, the sample weight is equal to the true sample weight 𝑤 (𝛾) = 𝑤. In the next steps, the gamma 

transformed sample weight is used to calculate the eigenvectors because the gamma transformation 

prevents it from being singular. The number of bins in the histogram 𝑛𝑏𝑖𝑛𝑠,𝑖 of parameter 𝑖used to 

determine the proposal distribution is defined using 𝑤𝛾 to prevent it from collapsing and is given by 

 𝑛𝑏𝑖𝑛𝑠,𝑖 = ⌈
1

2
⋅ (𝑁𝑒𝑓𝑓(𝑤))

1
3  ⋅

MAX(𝜃𝑖) −MIN(𝜃𝑖)

𝐼𝑄𝑅𝑖(𝑤
(𝛾))

⌉ (S2) 

1.1.2. Sampling along the principal axis  

A large sample size is essential to approximate the posterior distribution of interest. Due to 

computational limitations, the proposal distribution cannot be defined using a multivariate 

distribution. Alternatively, the samples were drawn from a univariate distribution for each principal 

component to include linear interactions and better estimate the distribution. Morzfeld et al.2 used 

this for dimension reduction and sampled only along the principal axis of the most important eigen 

vectors. We do not use it for dimension reduction, but for spatial reduction of the proposal 

distribution.  

The principal components are given by the Eigenvectors of the covariance matrix of the drawn 

samples 𝜃. To include goodness of estimation while preventing the covariance matrix from being 

singular, the 𝑤 (𝛾)-weighted covariance matrix was used.  
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 𝜃 = 𝜇 + 𝑊 ⋅ 𝑥 (S3) 

 𝑥 = 𝑊−1 ⋅ (𝜃 − 𝜇) (S4) 

with 

 𝑊 = 𝑒𝑖𝑔 (𝑐𝑜𝑣(𝜃, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑤 (𝛾))). (S5) 

 𝜇 = ∑𝑤 ⋅ 𝜃 (S6) 

Because W is an orthonormal rotation matrix, no correction is needed on the proposal distribution i.e. 

𝑞(𝜃) = 𝑞(𝑥).  

The proposal distribution 𝑞(𝜃) is an approximation of the posterior distribution of the previous 

distribution and consists of multiple uniform distributions. This is obtained by making a histogram of 

the samples regarding its weight 𝑤. Each principal component is used independently of each other. 

To prevent the covariance matrix to become singular, 10 ⋅ 𝑛𝜃 + 1 successful simulations were drawn 

from the initial proposal distribution 𝑞0(𝜃).  

1.1.3. Proposal distribution clustered with k-means 

Sampling along the principal components only accounts for linear dependencies in the input space. 

To also include nonlinear behaviour, we defined multiple proposal distributions based on clustered 

samples. Based on the transformed samples 𝑥, samples are clustered using the K-means algorithm. 

Each cluster describes a proposal distribution with a univariate distribution for each principle 

component. The probability density function of the proposal distribution 𝑞(𝑥) is given by the sum of 

the clusters. To prevent the model from being dominated by one cluster in the first iterations, the 

minimum number of kernels was 5 and the maximum kernel weight was 0.25. The total number of 

kernels was maximum 100 and set by 𝑛𝑘 =
𝑛𝑒𝑓𝑓

2
. 

1.2.Likelihood in detail 

The likelihood function is described as a function of the summed squared error Χ2. This error is the 

sum of the weighted dimensionless errors based on strain (𝑒𝜖,𝑠𝑒𝑔
2 ), strain rate (𝑒�̇�,𝑠𝑒𝑔

2 ), inter-segmental 

strain differences (𝑒Δ𝜖𝑖𝑛𝑡𝑒𝑟
2 ), ejection fraction (EF), LV end diastolic volume (EDV), and right 

ventricular diameter (RVD).   

 Χ(𝜃)2 = ∑ (𝑒𝜖,𝑠𝑒𝑔
2 + 𝑒�̇�,𝑠𝑒𝑔

2 )

𝑠𝑒𝑔∈𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

+ ∑ 𝑒Δ𝜖𝑖𝑛𝑡𝑒𝑟
2

𝑖𝑛𝑡𝑒𝑟∈𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑔

+∑𝑒𝑜𝑡ℎ𝑒𝑟
2  (S7) 

The start time 𝑡0 in measured strain was determined by the onset of the QRS complex. Because no 

ECG can be calculated from the CircAdapt model, there is no reference. An alternative to the QRS 

complex which is often used is mitral valve closure, however, this was not available in some datasets. 

To obtain a uniform definition of the likelihood function, the time 𝑡0 in the model was defined as 
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 𝑡0 = argmin
𝑡

Χ(𝜃)2  (S8) 

The starting time 𝑡0 in all time-series data such as strain were temporal shift to match the measured 

time-series data. Not all components in the likelihood distribution are 𝑡0 dependent.  

1.2.1. Strain and strain rate 

Modelled strain in the myofibre direction was defined as the wall area relative to the wall area at 

onset: 

 𝜖𝑚𝑜𝑑𝑒𝑙,𝑠𝑒𝑔 = √𝐴𝑚𝑠𝑒𝑔/𝐴𝑚𝑠𝑒𝑔,𝑡0
− 1 (S9) 

The error is calculated as 

 𝑒𝑠𝑒𝑔𝑚𝑒𝑛𝑡
2 = 𝛼𝜖

1

𝑡𝑒𝑛𝑑

1

𝑛
∑(𝜖𝑚𝑒𝑎𝑠,𝑠𝑒𝑔 − 𝜖𝑚𝑜𝑑𝑒𝑙,𝑠𝑒𝑔)

2
 (S10) 

Strain rate is defined as the time derivative of the strain. To reduce error magnification due to 

derivation, convolution is applied on both model and measurement strain rate.  

 𝜖�̇�𝑜𝑛𝑣𝑜𝑙𝑣𝑒 = 𝜖̇ ∗ 𝑓 (S11) 

with 𝑓 the convolution matrix. The error is calculated as 

 𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑟𝑎𝑡𝑒 ,𝑠𝑒𝑔
2 = 𝛼�̇�

1

𝑡𝑒𝑛𝑑

1

𝑛
∑(𝜖�̇�𝑒𝑎𝑠,𝑠𝑒𝑔,𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒 − 𝜖�̇�𝑜𝑑𝑒𝑙,𝑠𝑒𝑔,𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒)

2
 (S12) 

The difference in strain is defined as  

𝑒Δ𝜖𝑖𝑛𝑡𝑒𝑟
2 = 𝛼𝜖𝑖𝑛𝑡𝑒𝑟

1

𝑡𝑒𝑛𝑑

1

𝑛
∑((𝜖𝑚𝑒𝑎𝑠,𝑠𝑒𝑔1 − 𝜖𝑚𝑒𝑎𝑠,𝑠𝑒𝑔2) − (𝜖𝑚𝑜𝑑,𝑠𝑒𝑔1 − 𝜖𝑚𝑜𝑑,𝑠𝑒𝑔2))

2

 (S13) 

The following segment differences are included: [RVapex, RVmid], [RVmid, RVbase], [RVapex, 

RVbase], and [LV, IVS].  

1.2.2. EDV, EF, RVD 

The last term in the likelihood function was defined as 

 ∑𝑒𝑜𝑡ℎ𝑒𝑟
2 =

(𝑉𝑒𝑑,𝑚𝑒𝑎𝑠 − 𝑉𝑒𝑑,𝑚𝑜𝑑)
2

𝜎𝑉𝑒𝑑
2

+
(𝐸𝐹𝑚𝑒𝑎𝑠 −𝐸𝐹𝑚𝑜𝑑)

2

𝜎𝐸𝐹
2

+
(𝑅𝑉𝐷 − 𝑅𝑉𝐷)2

𝜎𝑅𝑉𝐷
2

 (S14) 
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1.2.3. Penalty functions 

Adaptive importance sampling tends to explore areas in the input space that are not physiological, 

especially at higher temperature and in early iterations. Allowing this reduces its ability to converge. 

By adding penalty functions to the likelihood function, the model is enforced to produce 

physiological signals and more computational cost is focused on the area of interest. Indices included 

for penalty functions are, amongst others, a maximum mean left atrial pressure of 25 mmHg and a 

maximum right atrial pressure of 15mmHg to keep physiological pressures, and a maximum error on 

time to peak strain to enforce the systolic phase of the model to be in the window of interest.  

1.3.Model parameters 

The parameter subset 𝜃 consists of 20 parameters obtained from an extensive parameter sensitivity 

and identifiability analysis.3 Included parameters including a description are shown in Table 2 of the 

manuscript. Samples are drawn using a log-uniform distribution or logit-uniform distribution to 

include boundaries. The log-uniform distribution includes only a lower-boundary LB. Samples are 

drawn from a proposal function 𝑞∗(𝑥) with 𝑥𝑖 ∈ [−∞,∞] and are translated to the probability density 

function in the normal domain following     

 𝜃𝑖 = LB + 𝑒𝑥𝑖 (S15) 

 𝑞𝑖(𝜃𝑖) =
1

𝑒𝑥𝑖
𝑞𝑖
∗(𝑥𝑖) (S16) 

or generalized 

 𝑞𝑖(𝜃𝑖) = (
𝑑𝜃

𝑑𝑥
)
−1

𝑞𝑖
∗(𝑥𝑖) (S17) 

The logit-unform distribution includes both a lower boundary LB and a upper boundary UB. 

Transformation from 𝑞∗(𝑥) to 𝑞(𝜃) is given by 

 𝑆(𝑥) =
1

1+ 𝑒−𝑥
𝑆−1(𝑥) = 𝑙𝑜𝑔𝑖𝑡(𝑥) = LOG(

𝑥

1 − 𝑥
) (S18) 

 𝜃𝑖 = 𝐿𝐵 + (𝑈𝐵 − 𝐿𝐵) ⋅ 𝑆(𝑥𝑖) (S19) 

 𝑥𝑖 = 𝑆−1 (
𝜃𝑖 − 𝐿𝐵

𝑈𝐵 − 𝐿𝐵
) (S20) 

 𝑞𝑖(𝜃𝑖) = 𝑆(𝑥𝑖) ⋅ (1 − 𝑆(𝑥𝑖)) ⋅ 𝑞𝑖
∗(𝑥𝑖)𝑓𝑜𝑟𝜃𝑖 ∈ [−LB,UB] (S21) 

 

1.4.Pseudo code 
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Pseudo code 1: importance sampling  

 𝑖𝑖𝑡𝑒𝑟 = 0  
 𝑞0 = 𝑈(𝑙𝑏, 𝑢𝑏)  
 Θ = {}  

 while not converged:  

  Draw 𝑛𝑆𝑖𝑚𝑠 samples 𝜃 and add to Θ Pseudo code 2 

  Calculate Χ2(𝜃) for each sample Pseudo code 3 

  Calculate probability density from proposal distribution 𝑞(𝜃) Equation (3) 

  Update proposal distribution 𝑞𝑖𝑖𝑡𝑒𝑟+1(𝜃) Pseudo code 4 

  𝑖𝑖𝑡𝑒𝑟 = 𝑖𝑖𝑡𝑒𝑟 + 1   

 

Pseudo code 2: draw single sample 

 For 𝑖𝑝𝑎𝑟  in 𝑛𝑝𝑎𝑟  

  Draw 𝑢 from 𝑈(0,1)  

  𝑘 = 𝐾𝑖 with ∑ 𝑤𝑖
𝑗=𝑖
𝑗=0

> 𝑢  and ∑ 𝑤𝑗
𝑗=𝑖+1
𝑗=0

< 𝑢  

  Draw 𝑥𝑖𝑝𝑎𝑟 from 𝑘  

 Transform 𝑥 to 𝜃 Equation (S3) 

 

Pseudo code 3: Calculate Χ2 for each sample 𝜃 

 Run model ℳ(𝜃)  

 If model is converged:   

     Get objective function 𝑧 = ℳ(𝜃)  

     Calculate Χ2(𝑧)  

 Else:  

     Χ2 = ∞  
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Pseudo code 4: Update proposal distribution 𝑞𝑖𝑖𝑡𝑒𝑟+1(𝜃)  

 Determine 𝑇  

 Calculate 𝑤 and 𝑤 ∗  

 Calculate 𝜃𝑜𝑝𝑡 = ∑𝜃 ⋅ 𝑤  

 Calculate principle components 𝑊 Equation (S5) 

 Transform each theta   

 Define ℎ𝑚𝑎𝑥  and ℎ𝑚𝑖𝑛   

 𝐻 = {ℎ𝑚𝑖𝑛 , … , ℎ𝑚𝑎𝑥} (10 steps)  

 For 𝑖𝑝𝑎𝑟  in 𝑛𝑝𝑎𝑟  

  Histogram of 𝑤 and 𝑤 ∗ to 𝜃𝑖  with 𝑛𝑏𝑖𝑛𝑠 bin width 𝑏  

  For = 𝑖𝐻  in 𝑛𝐻  

   𝑘𝑚𝑖𝑛 = min(𝐻𝑖𝑠𝑡 > 𝐻𝑖𝐻
) − 𝑏 and 𝑘𝑚𝑎𝑥 = max(𝐻𝑖𝑠𝑡 >

𝐻𝑖𝐻)  

 

   𝑘𝑚𝑖𝑛 = min(𝑘𝑚𝑖𝑛, 𝜃𝑜𝑝𝑡,𝑖𝑝𝑎𝑟 − 0.25 ⋅ 𝑛𝑏𝑖𝑛𝑠 ⋅ 𝑏)   

   𝑘𝑚𝑎𝑥 = max (𝑘𝑚𝑎𝑥, 𝜃𝑜𝑝𝑡 ,𝑖𝑝𝑎𝑟 + 0.25 ⋅ 𝑛𝑏𝑖𝑛𝑠 ⋅ 𝑏)   

   𝐾𝑖𝑝𝑎𝑟 ,𝑖𝐻 = 𝑈(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥)   

1.5.Derived parameters 

 

Figure S1: Derived parameters included in this study. (Left) Contractility is defined as the average 

stress-time derivative from 25% till 75% of the contraction curve (solid line in grey area a). (Middle) 
Compliance is defined as the wall area-tension derivative at end-diastole (black line around dot). 

(Right) Work density is defined as the area within the stress-strain loop.  
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2. Supplemental Results  

 

Figure S2: Posterior distributions of the estimated model parameters (top) and the correlation 

between the posterior distribution of model parameters and derived tissue properties (bottom). Axis 

are scaled to the minimum and maximum value of the distributions.  
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2.1. Reproducibility and Virtual Precision 

 

Figure S3: Intra observer validation and virtual validation. Two observations (O1 and O2) from the 

same observer are estimated 3 times each. From the most left distribution, a single simulation is used 

for virtual validation (dot on right). Colours match with the legend of Figure 1.  

 

Table S1 Percentage of mutual information of the Cardiac Output distribution of patient 1. On the 

diagonal, the two squares show model reproducibility and on the cross-diagonal it shows the inter-

observer variability.  

 F1a F1b F1c F2a F2b F2c K1a K1b K1c K2a K2b K2c    

F1a  94.4 96.6 93.4 96.9 94.2 91.1 93.1 94.8 88.3 89.7 90.1   Reproducibility 

F1b 94.4  94.7 95.5 94.0 95.3 93.3 95.1 95.3 91.8 94.4 93.9   Interobserver 

F1c 96.6 94.7  94.0 98.2 93.9 92.5 94.0 95.3 88.6 90.4 90.8   Intraobserver 

F2a 93.4 95.5 94.0  93.4 95.1 94.9 95.2 96.1 92.9 95.3 95.3    

F2b 96.9 94.0 98.2 93.4  93.3 92.0 93.8 95.1 88.3 89.8 90.1    

F2c 94.2 95.3 93.9 95.1 93.3  93.2 95.9 94.5 92.5 92.7 92.8    

K1a 91.1 93.3 92.5 94.9 92.0 93.2  95.0 93.4 92.4 95.6 95.2    

K1b 93.1 95.1 94.0 95.2 93.8 95.9 95.0  94.5 93.3 94.1 94.6    

K1c 94.8 95.3 95.3 96.1 95.1 94.5 93.4 94.5  91.3 93.2 93.1    

K2a 88.3 91.8 88.6 92.9 88.3 92.5 92.4 93.3 91.3  94.5 92.2    

K2b 89.7 94.4 90.4 95.3 89.8 92.7 95.6 94.1 93.2 94.5  96.2    

K2c 90.1 93.9 90.8 95.3 90.1 92.8 95.2 94.6 93.1 92.2 96.2     

 Total Reproducibility: 94.5% (95%CI [92.5, 96.5]) 

  Total Interobserver: 93.1% (95%CI [88.3, 95.9]) 

 Total Intraobserver: 94.1% (95%CI [91.7, 97.6]) 
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Table S2 Percentages of mutual information of all parameters in the first subject grouped by inter-, 

intraobserver and algorithm reproducibility.  

 𝜃0  𝜃1 𝜃2  𝜃3  𝜃4 𝜃5  𝜃6  𝜃7  𝜃8  𝜃9 𝜃10 𝜃11 𝜃12 𝜃13 𝜃14 𝜃15 𝜃16 𝜃17 𝜃18 𝜃19 Total 

Reproducibility 89.2 87.7 91.7 92.4 84.1 91.3 89.9 89.2 91.5 91.7 92.4 92.7 92.4 93 87.2 91.0 92.7 91.4 91.8 94.5 91.6 [74.6 – 96.2] 

Interobserver 89.7 87.4 74.2 82.5 79.7 90.5 88.5 72.2 70 87.2 91.7 92.7 88.2 88.8 81.9 91.0 92.4 89.4 90.5 93.1 88.8 [51.8 – 95.3] 

Intraobserver 87.8 87.5 68.5 78.5 65.3 90.1 84.8 69.0 55.4 85.4 91.2 92.6 86.9 83.7 73.1 91.0 93.2 83.7 88.9 94.1 87.2 [40.6 – 95.3] 

 

Table S3 Percentages of mutual information of all patients grouped by Inter, Intra observer, and 

algorithm reproducibility. Median values with 95% CI are shown.  

 Reproducibility Inter-observer Intra-observer 

Subject 1 91.6 [74.7 – 96.3] 88.8 [51.8 – 95.3] 87.2 [40.6 – 95.3] 

Subject 2 89.2 [66.4 – 96.2] 86.3 [64.8 – 94.8] 86.8 [62.3 – 95.3] 
Subject 3 91.0 [65.9 – 95.8] 88.0 [42.3 – 95.6] 87.3 [54.0 – 95.5] 

Subject 4 90.6 [72.3 – 95.8] 85.6 [46.3 – 95.2] 82.3 [27.8 – 94.3] 
Subject 5 90.4 [58.3 – 95.6] 89.6 [56.9 – 95.8] 88.9 [59.2 – 95.7] 
Subject 6 88.9 [65.9 – 95.4] 85.2 [53.0 – 94.5] 84.0 [50.0 – 94.3] 

Subject 7 89.5 [64.6 – 95.5] 86.1 [50.2 – 95.0] 82.9 [50.8 – 94.8] 
Subject 8 89.3 [65.3 – 95.3] 85.4 [55.9 – 94.3] 87.3 [63.4 – 95.3] 
Subject 9 87.3 [24.6 – 96.1] 80.3 [16.0 – 94.5] 83.1 [19.9 – 95.0] 

Total 89.9 [60.1 – 95.9] 86.5 [46.0 – 95.2] 85.9 [43.7 – 95.3] 

 

 

Table S4 Highest density interval (HDI) percentage corresponding to the true value. The total HDI is 

9% (95% CI [0 – 79]).   

[%] 𝜃0  𝜃1 𝜃2  𝜃3  𝜃4 𝜃5  𝜃6  𝜃7  𝜃8  𝜃9 𝜃10 𝜃11 𝜃12 𝜃13 𝜃14 𝜃15 𝜃16 𝜃17 𝜃18 𝜃19 

Subject 1 14 3 75 87 23 0 3 14 2 7 4 4 63 80 0 1 7 38 0 6 

Subject 2 47 66 6 12 2 2 50 2 2 3 6 26 4 2 15 93 6 71 1 5 

Subject 3 15 18 23 3 2 1 21 9 5 3 3 4 5 11 19 29 3 3 3 8 

Subject 4 24 24 39 84 10 22 5 11 2 16 9 3 1 46 3 40 2 16 14 18 

Subject 5 6 8 26 76 41 46 43 81 50 69 0 15 4 23 20 18 41 15 1 0 

Subject 6 21 99 27 82 2 31 25 19 56 31 25 55 11 24 2 56 11 14 25 12 

Subject 7 41 1 3 44 17 1 21 40 14 7 10 14 5 1 1 87 87 48 8 8 
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2.2. Additional plots 

Figure S4-Figure S11 show additional results of two other patients. Patient 2 (Figure S4-Figure S7) 

had more abnormal strain with more pronounced pre-stretch and delayed onset-of-shortening 

compared to Patient 1. Patient 3 (Figure S8-Figure S11) had relatively more homogeneous strain 

compared to Patient 1.   
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Figure S4: Example estimated strain (left) and derived parameters (right) of patient 2. This patient is 

used in the inter-intra observer study and virtual validation study.    

 

Figure S5: Intra observer validation and virtual validation of Patient 2. Two observations (O1 and 

O2) from the same observer are estimated 3 times each. From the most left distribution, a single 

simulation is used for virtual validation (dot on right). Colours match with the legend of Figure 1. 
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Figure S6: Convergence of estimated model parameters of Patient 2. The distributions on the right 

show the final estimated posterior distribution. Colours match with the legend of Figure 1. 
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Figure S7: Posterior correlation matrix of the estimated model parameters (top) and the correlation 

between the posterior distribution of model parameters and derived tissue properties (bottom) of 

Patient 2.  
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 Figure S8: Example estimated strain (left) and derived parameters (right) of patient 3. This patient is 

used in the inter-intra observer study and virtual validation study. Colours match with the legend of 

Figure 1.   

 

 

Figure S9: Intra observer validation and virtual validation of Patient 3. Two observations (O1 and 

O2) from the same observer are estimated 3 times each. From the most left distribution, a single 

simulation is used for virtual validation (dot on right). Colours match with the legend of Figure 1. 

 



 15 

 

Figure S10: Convergence of estimated model parameters of Patient 3. The distributions on the right 

show the final estimated posterior distribution. Colours match with the legend of Figure 1.  
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Figure S11: Posterior correlation matrix of the estimated model parameters (top) and the correlation 

between the posterior distribution of model parameters and derived tissue properties (bottom) of 

Patient 3. 
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