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Supplementary Material

This supplement is subdivided into the four following chapters:

1. Derivation of the optimized formulation for the data driven model inference problem with latent
mislabeling risks.

2. Mathematical properties of the problem, numerical methods.
3. Performance on synthetically mislabeled mammography data

4. List of SNPs relevant for Caucasian Wellderly

1 DERIVATION OF THE OPTIMIZING FORMULATION FOR THE DATA DRIVEN
MODEL INFERENCE PROBLEM WITH LATENT MISLABELING RISKS

Variables and notation:

We will consider a problem of analysing the labeled data sets (X , Y"bs) that are grouped into IV,
cohorths/groups, with T}, being the number of instances (e.g., the number of patients) in the cohort/group g.
For every data instance (¢, g) (e.g., for every patient number ¢ in the group g), we would like to identify
an optimal robust relation between a vector of features X; ;4 (e.g., an n-dimensional vector containing
the genotype, the age, some other patient-specific informations) and a “true” - but directly unobserved
- categorical labels Y; 4. Y; 4 is taking values in the finite set of m categories y = {y1,%2,...,Um},
representing for example a certain phenotype, e.g., with m = 2 for labels like y; ="“sick” and yo="healthy”.
We consider the “true” labels Y; , to be unobserved since they are not available directly. Directly given
are only the observed labelings Y;‘?;S, that can be mislabeled in every instance (¢, g) with some - yet
unknown - probability 7, = [Y},g = yﬂYfgs = yj}. As ¢; (Xt g,0) = [Xig|Yig = vi, o] we will
define a parametric stochastic model (i.e., a probabilistic model dependent on the finite-dimensional model
parameter vector «) that establishes a conditional dependence between the particular labeling and the
probability of a certain feature vector realisation. This model should be chosen such that it satisfies:

m

Z(ﬁl (Xt,g7a) = 17 Vt7g7a' (Sl)

1=1

Such parametric stochastic models can for example be the generalised linear models (GLMs, e.g., the
standard logit and probit models for m = 2) [/, [3] or the neural networks [S)]. We will assume that the
model function class ¢ is pre-defined and fixed - and that the parameter vector « should be inferred in the
data analysis procedure together with the unknown mislabeling probabilities 7. Selection of the optimal
parametric model class ¢ can be approached with the standard model selection procedures from the machine
learning (e.g., by means of the cross-validation or with the help of the information criteria) [2].

Derivation of the nonparametric and nonhomogenous log-likelihood formulation:
Deploying the notation introduced above and getting use of the law of the total probability [S]], we can
write the probability of observing a certain feature vector in the particular data instance (¢, g) as:

(Xegl = D [XiglYig =il [Yig =il (S2)
1=1
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Next, we use the law of the total probability again, establishing a relation between the “true” labeling Y
and the observed labeling Y °P:
m
Yig=ul = > [Veg =l = u] [vir =] (S3)
j=1

Incerting Il into 1} and assuming the statistical independence of pairs (th,gl,Y;?lfgsl) and

(Xt%gz,Y;‘;l”gz) for (t1,91) # (t2,92), we can express the overall probability (called likelihood) for

observing the given data as:

Ny Ty m

Xyl = TIILYC

g=1t=14j=1

Yig = vil [Yt,g = |V = yj] X <Yt‘,’§S = yj) 7 (S4)

where x () is an indicator function taking the value one if its argument is true and value zero otherwise.
Then, given the data sets (X ; YObS) , we can infer both the model relations [X; 4|Y; ; = v;] and an m x m
matrix of mislabeling risks [Yt,g = D@?};S = yj} by maximising the following log-likelihood function:

Ny Ty m

log [, Y| = 37> log D7 [XuglVeg = il Yoo = wilVis = v x (Y = w5) . (59
g=1t=1 ij=1

In order to preserve the probability properties of the optimisation arguments [X;,|Y; , = v;] and
[Yt,g = yl-]Yt?;’s = yj}, the log-likelihood maximisation should be subject to the equality and inequality
constraints:

[Xt.g

Vv
o

Yt,g - yl] Vtagaia

Vig=ulVe =y] > 0, Vtg.ij

m
> [Yt,g = i V' = yj} = 1, Vig,j
=1
(S6)

However, it is easy to verify that the overall number of the unknown optimisation arguments (the values of
[Xt7g|Yt79 = y;] and [Yt,g = yz-|Yt"’gs = yj} for different ¢, g, = and for different realisations of X') is much
larger then the overall size of the available data (X , YObS) - easily resulting in an effect that is known
as overfitting. This means that the optimisation problem (S5HS6) is underdetermined and would provide
multiple solutions that depend on the initialisation/starting point of the numerical optimisation procedure.
This general problem feature is known as ill-posedness [4]], a remedy for this problem can be provided by a
procedure called regularisation and will be explained in the next paragraph.

Making the problem formulation well-posed, additional regularisation assumptions:

To make the problem formulation (S5{S6)) well-posed, we will deploy two additional assumptions. As
demonstrated in the Examples part of the main manuscript, omitting one of these assumptions can easily
result in the ill-posed and overfitted models.
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Assumption I: mislabeling risks [Yt,g = yilYt?},’s = yj} are cohort/group-specific, do not depend on ¢, i.e.:

rg = Yeo = ulVeR = ui], v (87)

and for all 7, 7, g are confined to some a priori defined mislabeling risk intervals [TZ_ I r:% g] ,1.e.
0 < r;j’g§r2,3g§r1J9<1, Vg,1,7. (S8)
Assumption 2: there exists an explicit set of functions ¢1, ¢o, . . ., ¢y, describing a relation between the m

categories of the “true” unobserved labeling variables Y and the feature vectors X:

gbi (Xt,g) O_/) = [Xt,g’Yt,g = yl] ) Vta g, (89)
such that the condition is fulfilled and that the set of parameters « is regular in [1-sense [11], i.e

o)1 < C. (S10)

Assumption 1 is reasonable since in many biomedical applications the probability of data mislabeling
is mostly independent of ¢ and X; - and the data can be grouped into IV, cohorts in such a way that the a
priori available knowledge about the lower and upper bounds r;" g and r; ig for mislabeling risks can be
used in each of the resulting cohorts. Illustrations of this approach - that gets use of such a prior knowledge

about r, . ~and r; . - can be found in both application examples from the main manuscript.

i,J,9 ,5,9

Assumption 2 1s known under the name lasso-regularisation (11,3, 10]]. In context of generalised linear
models it has been demonstrated to be one of the most efficient tools against model overfitting [3]. On a
practical side, imposing constraint (SI0) for decreasing values C results in zeroing-out the unsignificant
elements of the model parameter vector o and allows finding a minimal sufficient set of non-zero model
parameters [3].

Substituting (STIS7YSESOISTO) into ( and dividing by constants Ny, T, we get the following

constrained maximisation problem:

L(a,Cir) = —Z Zlog Z 0i (Xt,g,0) 75 5.9X (Yt"bs = j> — max, (S11)
gt 1 ij=1 wr
m
> i (Xiga) = 1, Viga, (S12)
i=1
¢’i (Xt7g704) Z Oa Vtagaiy (813)
m
Y rigg = L Vg4, (S14)
i=1
0 S ri_,j,g S Ti,4,9 S T;:jg < 17 v.gviuja (815)
lal; < C. (S16)
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Most of the standard probabilistic model functions ¢; (e.g., logit and probit functions, other standard
transfer functions in neuronal networks) fulfil the constraints (S12) and (S13)) automatically. In such cases
these two constraints can be omitted, resulting in the following optimisation problem formulation:

N, T,
1 g 1 g m
L(a,Cr) = FZTZIOg > 6i (Xtg, @) rijgx (K‘,’é’szyj) — max, (S17)
9g=1"9 t=1 ij=1 ar
m
orije = 1, Vg (S18)
i=1
0 < 1y STijg ST, <1 V9, (S19)
o < C. (S20)

Set determined by the constraints (SI8),(S19) is user-defined and non-empty - since m > 1 (and because
categorical processes with only one state/category (m=1) make little sense). Moreover, a user-defined
choice of 1/~ is not really arbitrary and should be done in such a way that the r-constraints do not lead to
an empty set.

It is straightforward to verify that for every ¢, g in the data there exists a 7 such that the respective indicator
function y (Y;"’Es = yj) = 1. In other words, every data point in every cohort is assumed to be labeled. If
the model function ¢ is strictly bigger then zero for all arguments on the open interval (—oo, +00) then the
argument of the logarithm is always non-zero, the log-likehood function can not attain the value —oo
and will be smoothly differentiable (if the model function ¢ is smoothly differentiable). These conditions
are fulfilled for all of the common generalized linear models (e.g., for logit and probit models).

Even through the logarithm is a non-linear function, in the case of arbitrary characteristic binary
m

coefficients x; € {0,1}, > x; = 1 of linear combination of general values v; € R, we are able to

J=1
write

m m
log Z XV = Z X;logvj,
j=1 j=1
and therefore the terms in objective function (S18)) with particular indexes ¢, g can be written in form
m

log (Z%;l 0i (Xt.g, ) i jgx (Y88 = yj)) = log [Z (X (Vs = y)

j=1
di b

= XX (Yi5® = ;) log (
]:

NE

1 ¢i (Xt,g, ) Ti,j,g>]

¢i (Xt,g, ) Tm',g) -
(S21)

NSER

i=1

To simplify the analysis of the objective function (S17)), let us denote j'tyg € {1,...,m} as index
for which y (Yt‘fgs =Y, g) = 1. For every t, g there always exists exactly one jt’g, for all other j €
{1,...,m}\ {Jji4} in given term of ¢, j is the value of the indicator function equal to zero. Inserting (S21))
into the objective function (S17)) we obtain

Ny Ty m
1 1
Lo, Cr) = 5 > = > log (Z 0i (Xi.g, ) rij.tyg’g) . (S22)
9 g=1"9 t=1 i=1
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2 MATHEMATICAL PROPERTIES OF THE PROBLEM, NUMERICS

Existence of a solution:

We suppose that
Vragyi7j3¢i(Xt,g’a>>Oa T1]9>0

which ensures that the arguments of logarithms in are positive, therefore the objective function is
well defined on feasible set. If functions ¢; are continuous, then the whole objective function is continuous.
Moreover, the feasible set is closed and convex, therefore by Weierstrass extreme value theorem [9]], the
problem has always a solution.

Bernoulli trials with mislabeling:
For the sake of simplicity let us consider the case with one cohort IV, = 1, two categories m = 2, and a
constant parametric stochastic model, i.e., with

Cbl (Xt,g7 Oé) = q, ¢2 (Xt,g7 Oé) =:1-aq. (823)

Such a model satisfies condition (S12) and depends only on one ¢-independent unknown parameter
a € [0, 1]. The remaining unknowns of the problem consist of mislabeling probabilities

Yig =mlVeg =m] Vg = milVg® = ve] 1 _ [ LT ]

S24
Vig =Yl =]  [Vig = 1lV® = ) ro1 T22 (624

and a regularisation parameter. In this case, it is reasonable to extend the Lasso regularisation by an
additional lower bound
0<C <a<Ct<1,

where C'~ and C'" are some a priori minimal and maximal probability bounds for observing the first

category of the labels.

Since the simplified problem includes only two categories, we can introduce auxiliary notation for
characteristic functions x; 4 € {0, 1} such that

(YObS = yl) =  Xtg
(YO b= y2) = 1- Xt,g-

Using this, the objective function with (S21)) can be written in the form (omitting index g = 1)

|

L(a,C,r) Z xtlog(g1r1,1 + d2rz21) + (1 — xi) log(dir1,2 + gara2)] . (525)

Substituting the constant model (S23)) and the equality constraints (S18), i.e.,
ro1=1—r11, rg=1-—r9,

and using the following notation for the empirical relative frequency from the data statistics
T
1
- T Z Xt7
t=1
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one can simplify (S25]) even further, obtaining

xtlog(ari1+ (1 —a)(1—7r11)) + (1 — x¢) log(a(l —ra2) + (1 — a)ra2)]

N
=

L(a,Cir) =

H
Il
—

[xtlog(l =711 —a+2ar1) + (1 — x¢) log(re2 + a — 2arg2)]

I
N
M=

o~
I

1
og(l —r1 —a+2ari1)+ (1 — Np)log(ra o + a — 2arg2).

I
g

(S26)

Finally, the simplified optimisation problem with unknown variables o, r1 1,72 2 18 given by

L(a,C,r) = Nrlog(l—ri1—a+2ar1)+ (1 — Np)log(rao+ o —2arg2), (S27)
0 < r <rp<rt<l, (S28)
0 < 7 <rgo<r’ <1, (529)
0 < C <a<Ct<1 (S30)

The problem can be considered as an extension of the well-known Bernoulli trials problem - by
including the possibility of a random mislabeling in the data. It is easy to check that if we set the probability
of correct labeling to 1 and the probability of mislabeling to 0 in (S24)), i.e.,

YVig=mlY 2 =uy] = [Mg=nl¥=u] = 1, o { 1 0 } _
[Y;&/’g = ylly;f?gs = y2:| = [Y;f,g = y2‘Y;?gs = yl} = 0, ’

and choosing C~ = 0, C = 1, then the objective function is simplified to
L(o,C,I) = Nrloga + (1 — Np)log(l — «)
and the solution of the respective (unconstrained) log-likelihood maximisation problem is given by

¢1=Nr, ¢2=1— Nr.

On top of this, an extended problem (S27|S28|[S29S30) includes an additional possibility of random
mislabeling in the data. The following Lemma summarises the basic theoretical results.

Let N7 € (0,1),
C—,CTel0,1,C- <Ct and r 7" € (0.51),r" <r*

be given. Then the optimisation problem (S27IS28|[S29[S30) is well-defined and always has a solution.

a) Letry1,m09 € [r~,7T] be given and fixed. Then

Cc- ifr<C™ . .
a={ Cct ifr>ct r=01-Np) (14— ) - Np—22
1 — 27"1 1 1 — 27"2 2
T elsewhere ’ ’

is a solution of the optimisation problem.
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b) Additionally suppose that 1 1 = 192 = 7. If the set

Qny = {[a, 7] € [0,1)* :# — 22 +a =1~ Np} N ([C™,CT] x [r"

7)) (S31)

is non-empty, then it forms the system of all solutions of the optimisation problem.

o
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Figure S1. Graphical representation of the solution of to the Bernoulli trial problem with mislabeling

using Lemma 2] The curves are the graphical representation of the solution set (S31]
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Separation of variables:

From a numerical point of view, the problem for fixed C' = C can be solved as a sequence of
splitted two consecutive optimization problems, where we fix one variable and solve the problem with
respect to the last remaining one. Such an approach generates the monotonically decreasing objective
function, i.e. if for any given feasible initial approximation 7° we construct the sequence of approximations
solving foreach k = 0,1, ...

ol = argmin L (a, C, rk> s.t. (ST8),(S19) (i.e. (S22) with fixed C = C and r = r¥)
(6%

rk¥1 = argmin L (ak‘“, C, r> s.t. (S20) (i.e. (S22) with fixed C' = C and o = oF 1)
(S32)
then using the optimality conditions of each inner optimization problem
Va : L(a,é,rk > L ak+1,é,rk>
. . (S33)
Vr: L (o/“’“, C,r) > L(o"*C, rk+1>
we have (choosing a = o* and r = r* in (S33) )
L (ozkH, C’, rkH) <L <ozk+1, C’,rk> <L (ak,é’, Tk> . (S34)

The advantage of used splitting scheme is straightforward; the new optimisation problems have smaller
dimension as well as they are easier for analysis. Additionally, the original problem (in both variables «
and r) can be non-concave even if inner optimisation problems in one particular variable are concave. From
a numerical point of view, convex (or concave) optimisation problem are generally easier to solve [1]]. In
the following text we focus on analysis of inner problems in (S32)) separately.

Problem in variable r:
Let &, C' be fixed feasible variables in problem 1| Then the problem is given by

w(r) == L(&, C,r), p(r) — max (S35)

with respect to constraints (S18]), (S19).

Function p(r) is concave on feasible set.

PROOF. Let (2, denote the convex feasible set determined by constraints (SI8] [ST9)). Based on the
definition of concave function, it is necessary to prove that

Vri,re € Qp Vo € [0,1] 0 (1 —o)u(r) + op(re) < p((1 —o)ry + ora). (S36)

The left side of this inequality can be rewritten using the definition of objective function (S17/])

| 3
(1 —o)u(r) +oulrs) = w7 > 3. [(1 —0)log ( %1 (Xig,) Tl’i’ﬁ“”g)
—1i=1 =1 |
g Z (S37)
+ olog (i_l i (Xtg, ) r27i7§'t7g79)} ’




Supplementary Material

Please notice that the logarithm is a concave function, i.e.,
Vry,x9 € (0,00),Vo € [0,1] 1 (1 —0)log(z1) + olog(x2) <log((1 — o)x1 + ox2),

therefore each of the terms in summation (S37)) can be estimated from above

Ng Ty

(L= o) +onlra) < el & Slog | £ ox (e (1= 00y 50 4 0705,

g=1t
=pu((1 = o)ry + ory).

Inequality (S36)) is proven, therefore p is concave.

The problem is concave, however, the solution can be non-unique. To demonstrate this, let us focus on
one particular term in summation (S17) with fixed indexes , §

m
log | 3 0 (Xi0) i od (S38)

i.j=1

We can see, that all variables ; ; 5, 7 # 7 are eliminated from the given term. There is a possibility that
those variables are eliminated also from all other terms, i.e. from whole objective function (S35). In this
case, such variables are incorporated in the optimisation problem only in the form of separable constraints
(ST8), (ST9). Their values can be arbitrary chosen such that the resulting point will be still from the feasible
set, but the value of objective function remains unchanged. In practice, this means that if we consider in
our model a category which has not been observed in the data, then corresponding coefficients are not well
defined and the problem has an infinite number of solutions.

Another possibility of term elimination occurs if
Vi d)l-(Xﬂg,d) = — (S39)

in particular term (S38) in summation (S17) of indexes 7, §. Indeed, if we substitute these coefficients into
given term, we obtain

log ( > b ( )Tw X (Y"bs = ?/y)) = log < Z "ig,9X <Y£(,)gbs - yj))

i,7=1 4,j=1

m m
= log [ 530 |x (YPPS = yj) > Tigg
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One can see that the reasons for the first and the second type of elimination are not dependent, however,
together they are composing a priori unpredictable conditions for an infinite number of solutions.

Problem in variable o:
We fix C' and # and we are interested in properties of the problem

Ng Ty

(Z@ X)) i,jt,g,g>’ TU(a) — max (S40)

gltl

with respect to constraint (S20). It is easy to prove (similarly to the proof of Lemma [2)) that if ¢; are concave
functions, then W(«) is also concave function. However, concavity is not a typical property of standard
probabilistic model functions. Those functions are typically log-concave, which is not a sufficient condition
for concavity of W(«a) (convex linear combination of log-concave functions is generally not concave [1]).

Instead of solving directly, one can solve a so-called relaxed approximated problem, where the
lower bound of the objective function is minimised. This approach is typical for several methods behind
Expectation-Maximisation algorithms [8]] (e.g., for Bayesian mixture models, Hidden Markov Models
[8], and in Probabilistic Latent Semantic Analysis [6]]), where instead of working with the original log-
likelihood problem one creates the numerical maximisation scheme for its Jensen-approximated lower
bound. In our case, the lower bound can also be obtained using Jensen inequality [9]; the logarithm is a
concave function therefore one can estimate

NT ZZZ P G1:g 108 (90 (Xi g, @) = U(a) — max. (S41)

9 g=1t=1 i=1

Since \i/(oz) is composed as a linear combination of concave functions (we suppose that ¢;(«) are log-
concave functions, therefore log ¢;(«) are concave functions) with non-negative coeficients, the function
is concave itself. Additionally, if ¢;(«) are strictly log-concave (which is for example the case for a logit
function), then \I’(a) is strictly concave and the solution of relaxed optimisation problem (S41)) is unique.

In this paper, we discuss the solvability of the original problem (S40). Suppose the simplest case when
m = 2 (the problem solved in this paper) and let ¢;(X; 4, ) be quasiconcave functions in variable o, i.e.,

Yoy, ag, Vo € [0,1] : Y(cag + (1 — 0)ag) > min{y(ay), ¥ (az)}. (S42)

Let us remark that log-concave functions are quasiconcave [1]]. We show that each term in sum (S40)) is
a monotonic function, however, in the case of strictly monotonic logarithm, it is sufficient to prove the
monotonicity of argument of logarithm. Following Lemma presents the result.

Let ¢ be a quasiconcave function such that Vo : ¢o(a) € [0, 1]. Let ¢ be function such that Vo :
o1(a) + ¢p2(a) = 1, 1,72 € [0,1], 71 + 2 = 1. Then function

P(a) = rgi(a) + raga(a) (S43)

is monotonic (i.e., it is both quasiconcave and quasiconvex).

10
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PROOF. At first, notice that using assumptions we can write the function in form
U(a) =ri(l = do(a)) + rada(a) = r1 + (r2 — r1)da(a).
Let us consider general a1, aig and define
ar =0ca; + (1 —o0)ag
for arbitrary o € [0, 1]. Without loss of generality we suppose that 7o > 1. Then we can estimate

Y(ag) > r14 (2 —r1) min{ga(ar), pa(a2)}
>0
= min_{m + (r2 = r1)p2(01), 1 + (r2 — r1)¢2(a2)} = min{y (1), ¥(a2)},

which proves the quasiconcavity. Quasiconvexity can be proven in a siminar way. We say, that a function ¢
is quasiconvex, if —1 is quasiconcave [1]. We suppose that r; > r2. Then we can estimate

—(ag) > —r1+ (r1 —rg) min{gz(a1), pa(a2)}
>0
— min{—ry + (r1 — r2)da(o), =11 + (r1 — r2)da(an)} = min{—(ay), —h(a2)}.

We can conclude that (S40)) is a sum of monotonic function. However, the sum of monotonic functions is
generally not a monotonic function itself; the sum of quasiconvex functions is not generally quasiconvex
and the sum of quasiconcave functions is not generally quasiconcave.

One possibility how to enforce the (quasi)concavity of the objective function is to introduce to introduce
the so-called Tikhonov regularisation and solve regularised problem

U (a)=U(a) - ?pla) — max, (S44)

where p is a non-negative strictly convex function (for instance in lasso-regularisation p(«) = ||a|1) and
€2 > 0 is regularisation parameter. The following Lemma presents the solvability of new (unconstrained)
regularised optimisation problem.

Let f : R®™ — R be continuous function bounded from above, i.c., there exists b € R such that
Vr € R™: f(z) <b.Let p: R” — R be coercive functional, i.e.,

p(x) = o0 (S45)

[[#]l1—o0

and f.(r) = f(x) — €2p(x). Then optimisation problem f.(x) — max has a solution for any € > 0.

PROOF. Investigating the asymptotical behaviour of f, using boundedness and (S43) we get

lim f.(z)<b—¢€ lim p(z)=—-00 — lim f(z)=—0c0
[[fl1—o00 l]l1—o00 l[zfl1—o00

and we can conclude that f. always attains maximum on R".
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Let €2 > logm. Then the bjective function (S44) is strictly quasiconcave and consequently given
maximisation problem has an unique solution.

Numerics:

In the previous section, we have demonstrated that the problem in variable « is non-concave, therefore
even if the sequence generated by algorithm is monotonically decreasing (S34)), the final numerical
solution could be only the local maximum depending on initial approximation of V. The classical approach
is to run the algorithm with many random initial approximations and the final global solution can be chosen
with respect to the obtained objective function values in the computed local solutions.

However, if the dimension of variable r is not too large, the feasible domain defined by (S18) and (S19)
can be discretized using a regular grid. The nodes of this grid represent different fixed values of variable r
and for each of this fixed values it remains to solve the appropriate problem in remaining variable o.

In combination with discretisation of parameter C' we obtain following algorithm:

(i) first, the rectangular domain spanning a domain of mislabeling matrix elements in (S19) and admissible
values of C'in (S20)) is sampled (e.g., by means of a uniform equidistant grid) and

(ii) for every particular grid point (75, Cs) one deploys some standard gradient-based method (e.g.,
the interior-points method or the sequential quadratic programming [9]) to perform a constrained
optimisation of subject only to a constraint (S20) for fixed values of 7 and Cj.

For example, when m = 2 and N, = 1 (the case emerging in both of the application examples from the
main manuscript) there will be only two independent parameters in . Together with the scalar dimension
for the regularisation constant C' this will result in a 3D grid (7, Cs).

For every particular grid point value (rs,Cs) the concave maximisation procedure can be
performed independent from the other grid points - allowing for a higly-scalable implementation
when the problems for different s are solved in parallel and without a need for
communication between the different problems. Parallel MATLAB implementation of this algorithmic
procedure is available as a part of the toolbox of methods and is provided for open access over
GitHub at https://github.com/SusanneGerber/Mislabeling Coinference/tree/
master/Release/Mislabeling_Coinferencdﬂ

! Provided open-source package requires availability of the software licences for “Parallel Computing” and “Optimization” toolboxes that are part of the
standard MATLAB “Student’s Package”.
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3

PERFORMANCE ON SYNTHETICALLY MISLABELED MAMMOGRAPHY DATA

Table S1. shows the performance of different model types on the mammography dataset with various mislabeling rates. All models, despite the original one,
were trained using the respective mislabeled dataset. The average prediction accuracy was calculated based on the original mammography dataset. Co-Inference
outperforms a linear SVC and performs nearly on par with an state of the art SVC using an RBF kernel

4

Model data mislabeled | Accuracy | AUC
SVM - linear | 0.00% 0.772 0.8575
SVM —linear | 0.50% 0.774 0.859
SVM - linear | 1.00% 0.775 0.859
SVM — linear | 2.00% 0.774 0.860
SVM — linear | 4.00% 0.764 0.853
SVM — linear | 5.00% 0.759 0.851
SVM —RBF | 0.00% 0.815 0.889
SVM —RBF | 0.50% 0.819 0.892
SVM —RBF | 1.00% 0.821 0.892
SVM —RBF | 2.00% 0.823 0.892
SVM —RBF | 4.00% 0.829 0.897
SVM —-RBF | 5.00% 0.832 0.898
Co-inference | 0.00% 0.818 0.877
Co-inference | 0.50% 0.812 0.873
Co-inference | 1.00% 0.813 0.867
Co-inference | 2.00% 0.808 0.860
Co-inference | 4.00% 0.81 0.837
Co-inference | 5.00% 0.813 0.842

LIST OF SNPS RELEVANT FOR CAUCASIAN WELLDERLY

—1 refers to the minor, 0 to mixed and 1 to a major allele.

mean impact of (rs2112464 is -1) on Wellderly-probability is -0.30611;
mean impact of (rs62087156 is -1) on Wellderly-probability is 0.28732;
mean impact of (rs283753 is -1) on Wellderly-probability is 0.27068;
mean impact of (rs60311669 is 1) on Wellderly-probability is 0.24601;
mean impact of (rs75422555 is 1) on Wellderly-probability is -0.18855;
mean impact of (rs1339899 is 1) on Wellderly-probability is -0.17661;
mean impact of (rs306083 is 0) on Wellderly-probability is 0.16526;
mean impact of (rs11741244 is 1) on Wellderly-probability is -0.13878;
mean impact of (rs113874343 is 1) on Wellderly-probability is -0.13872;
mean impact of (rs9930761 is 1) on Wellderly-probability is 0.12943;
mean impact of (rs2740763 is -1) on Wellderly-probability is 0.12884;
mean impact of (rs7798774 is 1) on Wellderly-probability is 0.12714;
mean impact of (rs2237363 is 0) on Wellderly-probability is -0.12129;
mean impact of (rs8008750 is 1) on Wellderly-probability is -0.11345;
mean impact of (rs2081879 is 1) on Wellderly-probability is -0.1089;
mean impact of (rs4791034 is 1) on Wellderly-probability is -0.10437;
mean impact of (rs2946390 is 1) on Wellderly-probability is -0.098397;
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mean impact of (rs11834113 is 1) on Wellderly-probability is -0.097609;
mean impact of (rs112299761 is 1) on Wellderly-probability is -0.096565;
mean impact of (rs4298422 is 0) on Wellderly-probability is -0.091988;
mean impact of (rs429358 is 1) on Wellderly-probability is 0.085594;
mean impact of (rs2737628 is 0) on Wellderly-probability is -0.084257;
mean impact of (rs84460 is -1) on Wellderly-probability is 0.082506;
mean impact of (rs55931227 is 0) on Wellderly-probability is 0.08196;
mean impact of (rs4915195 is 1) on Wellderly-probability is -0.076019;
mean impact of (rs3020304 is -1) on Wellderly-probability is 0.070281;
mean impact of (rs2504065 is -1) on Wellderly-probability is 0.0689;
mean impact of (rs1121276 is 0) on Wellderly-probability is -0.067733;
mean impact of (rs16035 is 0) on Wellderly-probability is -0.066701;
mean impact of (rs11589267 is 0) on Wellderly-probability is 0.055175;
mean impact of (rs28573147 is 0) on Wellderly-probability is -0.053381;
mean impact of (rs4441745 is 0) on Wellderly-probability is 0.05153;
mean impact of (rs2941741 is 0) on Wellderly-probability is -0.04984;
mean impact of (rs77651534 is 1) on Wellderly-probability is -0.043252;
mean impact of (rs4722782 is 1) on Wellderly-probability is -0.04026;
mean impact of (rs11630259 is 1) on Wellderly-probability is 0.031974;
mean impact of (rs762624 is 0) on Wellderly-probability is 0.031756;
mean impact of (rs2536058 is 0) on Wellderly-probability is 0.031524;
mean impact of (rs5746094 is 1) on Wellderly-probability is 0.027616;
mean impact of (rs1121276 is -1) on Wellderly-probability is 0.027579;
mean impact of (rs2854117 is 0) on Wellderly-probability is -0.023039;
mean impact of (rs3774968 is 0) on Wellderly-probability is -0.022787;
mean impact of (rs9900495 is 1) on Wellderly-probability is -0.0075964;
mean impact of (rs4342445 is 1) on Wellderly-probability is 0.0039541;
mean impact of (rs77651534 is 0) on Wellderly-probability is 0.0029776;
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Average value of robust Akaike criterion
on training data

0.03 e =AM i |
10.02

0.01

6 8 10 12
C
regularisation parameter

Figure S2. Example 1 from the main manuscript (breast cancer data analysis): model 5 selection by the
robust Akaike Information criterion (AICc) [2]], bootstrap-averaged values of the AICc on the training sets
(with 500 bootstrap realisations).

Frontiers 15



Supplementary Material

REFERENCES

[1]Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New
York, 1st edition, 2004.

[2]K.P. Burnham and D.R. Anderson. Model selection and multimodel inference: a practical information-
theoretic approach. Springer-Verlag, 2002.

[3]Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.

[4]). Hadamard. Sur les problemes aux dérivées partielles et leur signification physique. Princeton
University Bulletin, 13:49-52, 1902.

[S]Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference and prediction. Springer, 2 edition, 2009.

[6]Thomas Hofmann. Probabilistic latent semantic indexing. SIGIR Forum, 51(2):211-218, August 2017.

[7]D. McFadden. Conditional logit analysis of qualitative choice behaviour. In P. Zarembka, editor,
Frontiers in Econometrics, pages 105-142. Academic Press, New York, 1974.

[8]G.J. McLachlan and T. Krishnan. The EM algorithm and extensions. Wiley series in probability and
statistics. Wiley-Interscience, 2008.

[9]J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.

[10]Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for cox’s
proportional hazards model via coordinate descent. Journal of Statistical Software, 39(5):1-13, 2011.
[11]Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Methodological), 58:267-228, 1996.

16



	Derivation of the optimizing formulation for the data driven model inference problem with latent mislabeling risks
	Mathematical properties of the problem, numerics
	Performance on synthetically mislabeled mammography data
	List of SNPs relevant for Caucasian Wellderly

