Supplemental material

Title: The effect of silicate ions on the separation of lithium from geothermal fluid Authors: Lee, Junbeum; Chung, Eunhyea

Table S1. Purity and suppliers of the reagents used to synthesize geothermal water

Product	Purity	Supplier	Used amount for 1L synthesized geothermal water		
LiBr	54 wt% in H ₂ O	Sigma Aldrich	0.34 mL		
LiCl	95-100 %	Merck	0.79 g		
CaCl ₂ •2H ₂ O	99 %	Sigma Aldrich	25.24 g		
MgCl ₂	99 %	Yakuri Pure Chemicals	0.49 g		
KCl	99.5 %	Waku Pure Chemicals	6.10 g		
NaCl	99 %	Daejung	67.59 g		
NaHCO3	99.5 %	Sigma Aldrich	0.20 g		
FeCl ₂ •4H ₂ O	≥99.0 %	Kanto chemical	0.25 g		
BaCl ₂ •2H ₂ O	99 %	Kanto chemical	0.03 g		
SrCl₂•6H₂O	98 %	Duksan Pure Chemicals	1.21 g		
HCl	37 %	Merck	1.76 mL		
H ₂ SO ₄	60 %	Daejung	0.21 mL		
Na ₂ O(SiO ₂)x · xH ₂ O (Sodium silicate solution)	Na ₂ O 10.6 % SiO ₂ 26.5 %	Sigma Aldrich	Sample A-0.0 mL Sample B-0.40 mL Sample C-0.95 mL		

Sample No.	x 50	1-1	1-2	1-3	1-4	2-1	2-2	2-3	2-4
Sample A	5.76	1.95	1.81	1.82	1.83	1.92	1.94	1.83	1.81
Sample B	5.64	1.99	2.15	2.08	2.05	1.96	1.98	2.04	2.01
Sample C	5.71	2.01	2.07	1.97	1.96	2.00	1.96	2.08	2.12

 Table S2. pH change of each extraction stage

Figure S1. Extraction efficiency (%) of various cations in not diluted geothermal water

Figure S2. Extraction efficiency (%) of various cations in $25 \times$ diluted geothermal water

Figure S3. Extraction efficiency (%) of various cations in $50 \times$ diluted geothermal water

Figure S4. Dissolved silica concentrations in solution A, B, and C

Figure S5. Repetitive extraction results of Na^+ in the geothermal water containing silicate ions 0, 150, 350 ppm with error bars.

Figure S6. Repetitive extraction results of Li^+ in the geothermal water containing silicate ions 0, 150, 350 ppm with error bars.