
Chary and Kaplan

MATHEMATICAL APPENDIX

REPRESENTING NETWORK ACTIVITY IN TERMS OF THE CONNECTION MATRIX

Equation (1) describes the projection of the network activity, v, onto the vth eigenvector, ev. In Equation1
(1), v is anN -dimensional vector that denotes the firing rate of allN neurons in our network. The vector h2
denotes the input. The matrix, M, denotes the connection strengths between units, that is Mij denotes the3
strength of connection from the jth neuron to the ith one. The vector eµ denotes the µth eigenvector and4
λµ is its accompanying eigenvalue. The coefficient of projection, cv (t) measures the amount of network5
activity parallel to that eigenvector. It, unlike the vth eigenvector, λv, can vary with time because the6
network activity is itself a function of time.7

τr
dv

dt
= −v + h + M · v v (t) =

N∑
µ=1

cµ (t) eµ.

τr

N∑
µ=1

dcµ
dt

eµ = −
N∑
µ=1

(1− λµ) cµ (t) eµ + h eµ · ev = δµv , pick vth one.

τr
dcv
dt

= − (1− λv) cv (t) + ev · h Assume h 6= h (t)

cv (t) =
ev · h
1− λv

(
1− e−

t
τr

(1−λv)
)

+
(
cv,init

)
e−

t
τr

(1−λv) (1)

Moving from the first line to the second line in Equation (1) used the expansion shown to the right of8
the first line. Moving from the second line to the third line uses the fact that eigenvectors are mutually9
orthogonal. We assume that the filtered input, h = W · u is not a function of time so that we can easily10
separate the variables in second line for integration. The third line describes the projection of the voltage11
onto the vth eigenvector.12

The final line in Equation (1) describes how the topology of a network constrains its dynamics by13
expanding the distribution of firing rates, v, in terms of the eigenvectors of the connection matrix, M, The14
third line in Equation (1) shows that the eigenvalue controls the scaling of the input ev · h.15

τM
dM

dt
= (I−M)− (W · u)v Analyze steady-state

(I−M∞) = (W · u)v Take tensor product with v

(I−M∞)v = (W · u)Qvv (2)

Equation (2) relates the autocorrelation of network activity, Qvv, to the strength of recurrent and16
feedforward connections. Synchronous input can induce correlated network activity even if neurons in17
the network do no connect to each other, that is the left-hand side of Equation (2) does not vanish when18
M∞ → 0.19
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Equation (3) shows how the basic Hebbian rule (Hebb, 1949) drives weights to lie parallel to the
eigenvectors of the input autocorrelation matrix, Q.

τw
dw

dt
= vu Substitute v = w · u because τr

dv

dt
= −v + w · u

= w · uu Define Q = 〈uu〉
= Q ·w Recognize Q as correlation matrix (3)

In Equation (3), w denotes the strength of connection between each neuron in u and v. The time constant20
for the adjustment of synaptic weights is represented by τw. Moving from the first to the second line21
assumes that the modification of synapses is much slower than synaptic transmission, which allows v to be22
replaced by its steady-state value. This is in keeping with the observation that synaptic plasticity involves23
protein synthesis, which is orders of magnitude slower than the movement of ions through a permeable24
channel. Any plasticity rule with the same form as Equation (3) ultimately sets synaptic weights parallel25
to the input autocorrelation matrix.26

Equation (4) demonstrates that Equation (3) is unstable because the weights, w, grow without bound .

w · τw
dw

dt
= w ·Q ·w

τw
d|w|2

dt
= w ·Q ·w Recall v∞ = w · u;Q = uu†

= v2 (4)

The above discussion demonstrates the importance of synchrony in changing the possible dynamics27
of a system. Strongly correlated can change synaptic weights. These changes directly modulate one28
synapse and induce compensatory changes in others, to maintain homeostasis. However, certain patterns29
of activity can only occur or co-occur with certain distributions of weights. This suggests that a network30
can compensate for the destabilizing effects of only some types of correlated inputs but not others. One31
input could even interfere with our network adjusting its feedforward weights in response to another32
pattern. This resembles the phenomenon of ”blocking” in classical and operant conditioning.33

RECOVERY OF A MEMORY

We define the recovery of a pattern of activity, vΩ, as when the network’s activity, v (t), puts the network34
within the basin of attraction of that fixed point so that the trajectory of the system approaches that fixed35
point, v (t)→ vΩ for large t.36

vΩ = F
(
M · vΩ

)
Definition of fixed point (5)

In Equation (5), M denotes the connection matrix, as in prior equations. F denotes a function. The37
vector vΩ represents the memory being recalled. Two necessary and sufficient conditions (taken together)38
for the existence of fixed points are that (i) F saturates (Grassberger and Procaccia, 1983), and (ii) M39
is symmetric (Dayan and Abbott, 2001).40
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DYNAMICS OF INTRINSIC CONNECTIONS DECORRELATE OUTPUTS

τM
dM

dt
= (I−M)− (W · u)v (6)

Equation (6) decorrelates the outputs, as Equation (7) shows by noting that Equation (6) pushes the41
network activity v towards a uniform distribution.42

τM
dM

dt
= (I−M)− (W · u)v Recall K = (I−M)−1 ; Find K∞

K−1
∞ = (W · u)v Multiply both sides by K∞

I =
(
K−1
∞ ·W · u

)
v⇒ I Recall v = K ·W · u (7)

τv
dv

dt
= −v + W · u + M · v Notice v∞ = W · u + M · v∞

K ≡ (I−M)−1 Assume eigenvalues of M have Re < 0

τW
dW

dt
= 〈vu〉 ⇒ K ·W ·Qvu τv � τW (8)

In the last line of Equation (8), Qvu denotes the cross-correlation function between the stimulus, u and43
network activity, v. Equation (8) is unstable because the right-hand side of the last line can grow without44
bound if the neurons in the network form functional connections with each other, that is M 6= I, or if45
they are sensitive to input, that is, not all elements of, W are 0. In the next section, we demonstrate how46
including the effects of reward-dependent plasticity provides one way to make Equation (8) stable.47

CONSTRUCTION OF M†

M = (1− δaa′)
∑
{aΩ}

aΩ
i ⊗ aΩ

i (9)

Equation (10) derives M†, a matrix that encodes the vectors
[

1
1

]
and

[
0
1

]
according to Equation48

(9).49

M = (1− δaa′)
∑
{aΩ}

aΩ
i ⊗ aΩ

i

= (1− δaa′)
{[

1 1
1 1

]
+

[
0 0
0 1

]}
=

[
0 1
1 0

]
(10)

The last line of Equation (10) corresponds to M† presented in the text when α = 0, that is when the50
rows are linearly independent.51
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Figure 1. Difference in contributions of Gaussian and log-Gaussian reward dynamics to unit activity. Graph of Equation (12) assuming that both
distributions have null mean, unit variance, and unit standard deviation.

COMPARISON OF REWARD DYNAMICS

In this section we analyze the effect that changing the temporal dynamics of the reward from a Gaussian52
to a log-Gaussian has on the chance that a neuron’s state will change. We consider the activity of a neuron,53
I , in two states, Gaussian and log-Gaussian (Equation (11)). We assume that both distributions have null54
mean and unit variance and standard deviation.55

IGaussian = (M− I)v + kGaussian ∗ s
Ilog-Gaussian = (M− I)v + klog-Gaussian ∗ s (11)

In Equation (11), s denotes a stimulus, which is the same for both cases. The symbol k denotes the56
Gaussian or log-Gaussian kernel, depending on the subscript. We now calculate the difference between57
the two lines of Equation (11) (Equation (12)).58

∆I = s ∗
(
kGaussian − klog-Gaussian

)
=

1√
2π

(
e
−1
2 t2 − 1

t

)
(12)

Figure 1 graphs Equation (12) to demonstrate that, given the same stimulus, reward dynamics that follow59
a Gaussian are more likely to change unit activity at the beginning of the stimulus. Reward dynamics that60
follow a log-Gaussian are more likely to change unit activity during the middle and at the end of the61
stimulus. When the two distributions have unequal variances or unequal means, Figure ?? is accordingly62
deformed.63
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COMPUTATIONAL APPENDIX

All code for this project was written by author in MC in Python and is available in the GitHub repository64
synchrony. The original data files are not on the repository because GitHub limits individual file size to65
100 MB. The Python modules that recreate the figures in this paper, accordingly, will not run. The original66
data files are available on request.67

NUMERICAL INTEGRATION

The basic integration scheme for all simulations was a modified forward Euler integration with a timestep68
of 0.01ms. For a timestep ∆t, we used the update rule in Equation (13).69

vi (t+ ∆t) = vi,∞ + (vi (t)− vi,∞) + e−
∆t
τr (13)

In Equation (13), the steady state, v∞ is given by Equation (14).70

vi,∞ =
ei · h
1− λi

ei (14)
71
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