
Frontiers in Neuroinformatics Research Article
10 April 2014

Supplementary material:
PyNCS: a microkernel for high-level definition
and configuration of neuromorphic electronic
systems
Fabio Stefanini 2,†, Emre Neftci 1,∗,†, Sadique Sheik 2,†, Giacomo Indiveri 2
1Institute for Neural Computation, UCSD, La Jolla, CA, USA
2 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich,
Switzerland
† equal contributors
Correspondence*:
Fabio Stefanini
Institute for Neuroinformatics, Winterthurerstrasse 190, 8057 Zurich, Switzerland,
fabio.stefanini@ini.phys.ethz.ch

Research Topic

ADDRESS REPRESENTATIONS AND MONITORING TOOLS

A central feature in PyNCS concerns address translation. In the most basic Address Event Representation
(AER) system, digital addresses are associated to spiking neurons in neuromorphic devices by local
encoders, generating a unique digital string whenever a neuron spikes which corresponds to that neuron,
and to synapses by decoders, which direct digital pulses to the synapse which correspond to the received
address. These digital addresses (unsigned integers) are referred to as physical addresses, because they are
physically associated to the corresponding spike sources and targets. To facilitate operations with these
addresses, PyNCS associates to each addressable unit two more abstract representations, with a one-to-one
correspondence between them and the physical addresses: a “Human Readable (HR) address”, which is a
tuple of unsigned integers specifying the coordinates of the neuron or synapse (e.g. neuron’s x coordinate,
neurons’s y coordinate, synapse) and a positive, real-numbered “logical” address. HR addresses are useful
for specifying the network topology but can be difficult to use because of their multiple dimensions,
especially during visualization. To simplify the of multidimensional addresses, PyNCS makes use of the
“logical” addresses. The integer part of the logical address specifies the collapsed address of the soma and
the fractional part of the number specifies the (possibly multidimensional) synapse according to:

al =
n∑

i=1

2
∑n−1

j=0 Nj ·Xi +
m∑
i=1

2−
∑m

j=1 Mj · Si,

where al is the logical address, Ni is the number of bits associated to dimension i (N0 = 0), Mi is the
number of bits associated to the synaptic dimension i. For example, on a multineuron chip having one
neuron per node of a 64 dimensional grid, with 4 synapses per neuron, a synapse with HR coordinate (23,
12, 2) has logical address 791.5 = 12 · 26 + 23 + 2 · 2−2 and a synapse on a neighboring neuron (24,
13, 2) has address 792.5. When sorted, the addresses are ordered according to the first coordinate, which
is convenient for spike train visualization and analysis. The three types of addresses described above:

1

Stefanini et al. pyNCS

integers, tuples and floating point numbers are immutable in Python, enabling them to be used as hash
table keys (dictionaries). This feature is used for fast translation between the three types.

To analyze and plot spike trains PyNCS makes use of SpikeLists. SpikeLists have a multitude
of functions for computing the basic statistics of spike trains and plotting. It is an adapted version
of the SpikeList class found in the NeuroTools module (http://www.neuralensemble.org/
NeuroTools/). PyNCS SpikeLists are therefore compatible with NeuroTools for extensive spike train
analysis. The SpikeMonitor is a SpikeList container that allows to seamlessly monitor the activity of
a population neurons. At the end of “run()”, each monitor is populated by the events whose addresses
match those of the monitored population.

CHIP AND SETUP DESCRIPTIONS FILES

Chip description files contain the specific informations required to configure and communicate with
each neuromorphic chip. They are written in a newly defined mark-up language named Neuromorphic
Hardware Mark-up Language (NHML). Here we provide an example of an NHML that describes the
neurons, synapses and parameters available in a neuromorphic chip that consists of a two-dimensional
sheet of 2048 neurons, with 4096 excitatory and 2048 inhibitory AER synapses.

<chip chipclass="IF2DWTA">

<addressSpecification type="aerIn">
<dim id="x" type="soma">

<range>range(64)</range>
<description/>
<decoder>X>>1</decoder>

</dim>
<dim id="y" type="soma">

<range>range(32)</range>
<description/>
<decoder>((Y-(Y%3))<<1)/3+(X&1)</decoder>

</dim>
<dim id="s" type="synapse">

<range>[0, 1, 2]</range>
<description/>
<decoder>Y%3</decoder>

</dim>
<pin id="X">

<decoder>2*x+(y&1)</decoder>
</pin>
<pin id="Y">

<decoder>s+3*(y>>1)</decoder>
</pin>
<pinlayout>Y0 Y1 Y2 Y3 Y4 Y5 X6 X5 X4 X3 X2 X1 X0</pinlayout>

</addressSpecification>
<!-- aerOut ADDRESS SPECIFICATION HERE... -->

<parameters>
<parameter

Count="41.0"
SimulationValue="0.0"
Description=""
Pin="51.0"
BiasType="dac"
PADtype=""

Frontiers in Neuroinformatics 2

Stefanini et al. pyNCS

FET=""
Range="[0.05, 0.2]"
Pad=""
CircuitBlock="SYNAEREXC"
Channel="78.0"
SignalName="nsynaerexcplswdt"
/>

<!-- OTHER PARAMETERS HERE -->
</parameters>

<neuron id="excitatory">
<soma type="SOMA" id="general">

<dim id="y" range="range(32)"/>
<dim id="x" range="range(64)"/>
<parameter id="refractory" SignalName="nrf"/>
<!-- OTHER PARAMETERS HERE -->

</soma>
<synapse type="EXCITATORY SYNAPSE" id="excitatory1">

<dim id="s" range="[2]"/>
<parameter id="threshold" SignalName="nsynaerexcth1"/>
<!-- OTHER PARAMETERS HERE... -->

</synapse>
<!-- OTHER SYNAPSES, E.G., INHIBITORY, HERE... -->

</neuron>

<!-- OTHER NEURONS HERE... -->

</chip>

An outline of a 4 bit setup type description file is shown below. The file lists the available channels in
the setup together with their corresponding reserved chunks of addresses.

<?xml version="1.0" ?>
<setuptype version="0.1">

<channelAddressing bits="[17, 18, 19, 20]" name="default" type="monitor"/>
<channelAddressing bits="[17, 18, 19, 20]" name="default" type="sequencer"/>
<slot id="0">

<aerMon in="[8]" out="[0]"/>
<aerSeq in="[8]" out="[0]"/>

</slot>
<!--> Here follow other 2ˆ3-1 slots... <-->

</setuptype>

In the following code the actual configuration of a neuromorphic setup is outlined. It is based on the 4 bit
setup type listed in the previous code. The code defining the content of the setup is provided to PyNCS in
the form of an eXtensible Mark-up Language (XML) file called setup file.

<?xml version="1.0" ?>
<!DOCTYPE document SYSTEM "setup.dtd">

<!--> A multi-chip configuration based on a 4-bit setup. <-->
<setup version="1.0">

<chip chipfile="my_chip.nhml" id="chip" slot="1">
<configurator module=’pyMyConf.api’>

<parameter name=’host’>some.host.com</parameter>
<parameter name=’board’>208</parameter>

Frontiers in Neuroinformatics 3

Stefanini et al. pyNCS

</configurator>
</chip>

<!--> Here other <chip> objects... <-->

<virtualchip chipfile=’my_reteina.nhml’ id=’retina’ slot=’5’ />
<defaultchip chipfile="default.nhml" />

<communicator module=’pyMyCom.api.com_client’>
<parameter name=’host’>some.com.host.com</parameter>
<parameter name=’fps’>25</parameter>
<!--> Other ComAPI-related parameters here... <-->

</communicator>

<mapper module=’pyMyMap.api.conf_client’>
<parameter name=’host’>some.map.host.com</parameter>
<parameter name=’version’>3.0</parameter>
<!--> Other MapAPI-related parameters here... <-->

</mapper>

</setup>

The two XML files describing the hardware setup provide all the necessary information for PyNCS and
its internal modules to communicate with it and configure it. This information is parsed from the files on
initialization of the NeuroSetup as follows.

SETUP DEFINITION
setup = pyNCS.NeuroSetup(’setuptype.xml’,’setupfile.xml’)

More code and examples are available at https://github.com/inincs.

DETAILS TO INTERFACING A SPIKING NEUROMORPHIC CHIP WITH A SILICON
RETINA

The visual stimulus has been produced using the PyGame interface (http://www.pygame.org). Two
horizontal light bars of different size move and 10% difference in brightness slide on a dark background
in two opposite directions. The canvas is a torus, such that when a bar hits the border it disappears
and reappears on the other side of the canvas. The code is also available at http://ncs.ethz.ch/
projects/neurop/.

import pygame, sys
from pygame.locals import *

pygame.init()
fpsClock = pygame.time.Clock()

win_width, win_height = 640, 480
windowSurfaceObj = pygame.display.set_mode((win_width, win_height))
pygame.display.set_caption(’Sliding bar’)

grayColor = pygame.Color(0, 0, 0)
bars_contrast = 0.1 # luminance contrast between bars
bar1Color = pygame.Color(255, 255, 255)
bar2Color = pygame.Color(255-int(bars_contrast*255),

255-int(bars_contrast*255),

Frontiers in Neuroinformatics 4

Stefanini et al. pyNCS

255-int(bars_contrast*255))

pos_left1 = 10 # initial position of the bar1
pos_top1 = 10
delta_left1 = 5
delta_top1 = 5
width1 = 100
height1 = 20

pos_left2 = -10 # initial position of the bar
pos_top2 = 10
delta_left2 = -5
delta_top2 = -5
width2 = 50
height2 = 20

while True:
windowSurfaceObj.fill(grayColor)

pygame.draw.rect(windowSurfaceObj,
bar1Color,
(pos_left1, pos_top1, width1, height1))

pygame.draw.rect(windowSurfaceObj,
bar2Color,
(pos_left2, pos_top2, width2, height2))

pos_top1 += delta_top1
pos_left1 += delta_left1
pos_left1 %= win_width - width1
pos_top1 %= win_height - height1

pos_top2 += delta_top2
pos_left2 += delta_left2
pos_left2 %= win_width - width2
pos_top2 %= win_height - height2

for event in pygame.event.get():
if event.type == QUIT:

pygame.quit()
sys.exit()

pygame.display.update()
fpsClock.tick(20)

The following code listing shows an example of PyNCS usage to configure and monitor a neuromorphic
setup consisting of a silicon retina and a multi-neuron chip.

from pyNCS import Population, Connection, NeuroSetup, monitors
import contextlib
from visual_stimulus import init_vstim, term_vstim

Initialize setup
setup = pyNCS.NeuroSetup(’setupfiles/4bit_setuptype.xml’, ’setupfiles/ssm_setup.xml

’)
set_default_biases(setup)

Frontiers in Neuroinformatics 5

Stefanini et al. pyNCS

#POPULATIONS
p_ret = Population(’Retina’)
p_wta = Population(’Exc.’)
p_wta_inh = Population(’Inh.’)

p_ret.populate_all(setup, ’retina’, ’pixelon’)
p_wta.populate_all(setup, ’ifslwta0’, ’excitatory’)
p_wta_inh.populate_all(setup, ’ifslwta0’, ’inhibitory’)

#CONNECTIONS
C = [Connection(p_ret[i:(2**12):64], p_wta[(2*i):(2*(i+1))], ’excitatory0’,

fashion = ’random_all2all’,
fashion_kwargs = {’p’ : 0.5}) for i in range(62)]

mons = setup.monitors.create([p_ret,p_wta,p_wta_inh])

#VISUAL CONTEXT
@contextlib.contextmanager
def visual_exp_cm():

init_vstim()
yield #sequencing and monitoring begins here
term_vstim()

#RUN
setup.run(duration = 10000, context_manager = visual_exp_cm)

#PLOT
monitors.RasterPlot(mons)

The setup files used in this example are identical to the ones used in the article. After the setup object
is created, the populations associated to the retina (here we take only neurons of type pixelon, i.e.,
those that are associated with increase in contrast), the excitatory neurons of the Soft Winner–Take–
All (sWTA) and its inhibitory neurons are defined. The neuron types, their numbers and associated
synapses are described in the chip files. Each column in the retina projects to two neighboring neurons
in the multi-neuron chip. The probability of a connection to exist between each pair of neurons is 0.5.
The pyNCS.monitors module is directly accessed via the setup object, and allows for the creation
of spike monitors associated to each population. Using a context manager, the function that initiates
the visual scene can be passed to the API call and the low-level driver. The API module calls this
function immediately before the monitoring is initiated. This allows the visual scene to be almost perfectly
synchronized with the monitoring events. Finally, the experiment is run by calling setup.run() and
raster plots of the monitored populations are created.

DETAILS TO SSM GENERATION

The following code listing shows the script generating the Soft State Machines (SSMs). The SSM is
configured using the state transition table, which describes all the possible state transitions conditioned
on input symbols. Here, the state machine is specified in fsm and the sWTA couplings implementing
the persistent activity already exist (i.e. they are hard-wired). First, the populations associated to the
SSM states, input symbols and all possible transitions are created. Input symbols are provided by an
external source of address-events, generated on a desktop PC, with 16 neurons per input symbol. The
state populations consist of 32 neurons, configured such that their activity can persist in the absence
of inputs. By construction, each state population is in competition with all the other state populations
mediated by a common inhibitory population.

Frontiers in Neuroinformatics 6

Stefanini et al. pyNCS

Each possible transition between two states is mediated by a 16 neuron population in the “transition
sWTA”, and is triggered by an input symbol. For each possible transition, there is a population in the
transition sWTA which is activated by that symbol and the population of the previous state through
excitatory connections. The transition population is configured such that it can activate only if the two
efferent populations are simultaneously active. The output of each transition population is mapped on to
the target state populations.

Frontiers in Neuroinformatics 7

