Supplementary Material for

NOBIAS: Analyzing anomalous diffusion in single-molecule tracks with nonparametric Bayesian inference

Ziyuan Chen¹, Laurent Geffroy², Julie Biteen^{1,2,*}

University of Michigan, Departments of ¹Biophysics and ²Chemistry, Ann Arbor, MI 48109

* jsbiteen@umich.edu

Contents:

- SI Tables S1 S8
- SI Figures S1 S4
- SI Note: Blocked Sampler for the NOBIAS HDP-HMM module

Table S1. Two-state mixture results for simulations of the standard abundant, standard sparse, motion blur abundant, motion blur sparse, and a mixture of Brownian and subdiffusive fractional Brownian motion models. Diffusion coefficients (in μ m²/s) and weight fractions (in %) are given for the ground truth inputs and the NOBIAS HDP-HMM module outputs for each of the 2 states. These data correspond respectively to the main text figures as indicated. Errors represent standard deviation.

	State 1 (μm ² /s; %)	State 2 (μm ² /s; %)	Main Text Figure
Standard abundant	0.135 74.75	0.135 1.8 74.75 25.25	
NOBIAS	0.136 ± 0.001 74.82 ± 0.14	1.824 ± 0.019 25.18 ± 0.14	2A
Standard sparse	0.135 70.23	1.8 29.78	2B
NOBIAS	0.132 ± 0.001 69.12 ± 0.26	1.754 ± 0.026 30.88 ± 0.26	2B
Motion blur abundant	0.135 74.32	1.8 25.68	2C
NOBIAS	0.143 ± 0.001 71.35 ± 0.18	1.579 ± 0.010 28.65 ± 0.18	2C
Motion blur sparse	0.135 70.24	1.8 29.76	2D
NOBIAS	$\begin{array}{c} 0.142 \pm 0.001 \\ 67.20 \pm 0.32 \end{array}$	1.580 ± 0.016 32.80 ± 0.32	2D
Mixture of BM and FBM	Mixture of0.045BM and FBM50.76		3A
NOBIAS	0.044 ± 0.0003 49.20 ± 0.08	0.901 ± 0.006 50.80 ± 0.08	3A

Table S2. Four-state mixture results for simulations of the standard abundant, standard sparse, motion blur abundant, motion blur sparse, and a mixture of Brownian, subdiffusive fractional Brownian, and superdiffusive fractional Brownian motion models. Diffusion coefficients (in μ m²/s) and weight fractions (in %) are given for the ground truth inputs and the NOBIAS HDP-HMM module outputs for each of the 4 states. These data correspond respectively to the main text figures as indicated. Errors represent the standard deviation.

	State 1 (μm ² /s; %)	State 2 (μm ² /s; %)	State 3 (μm ² /s; %)	State 4 (μm ² /s; %)	Main Text Figure
Standard abundant	0.009 33.70	0.09 16.32	0.54 16.01	2.25 33.97	2E
NOBIAS	$\begin{array}{c} 0.009 \pm 0.0001 \\ 33.68 \pm 0.11 \end{array}$	0.089 ± 0.002 16.37 ± 0.20	0.561 ± 0.012 16.44 ± 0.36	2.275 ± 0.022 33.51 ± 0.33	2E
Standard sparse	0.009 29.74	0.09 19.61	0.54 19.51	2.25 31.14	2F
NOBIAS	0.009 ± 0.0001 29.18 ± 0.22	0.092 ± 0.003 20.79 ± 0.41	0.610 ± 0.026 21.92 ± 0.72	2.371 ± 0.048 28.11 ± 0.74	2F
Motion blur abundant	0.009 34.74	0.09 16.64	0.54 16.16	2.25 32.46	2G
NOBIAS	$\begin{array}{c} 0.012 \pm 0.0002 \\ 31.74 \pm 0.29 \end{array}$	0.084 ± 0.002 18.04 ± 0.35	0.518 ± 0.009 18.32 ± 0.41	2.263 ± 0.015 31.89 ± 0.36	2G
Motion blur sparse	0.009 31.32	0.09 19.44	0.54 20.15	2.25 29.10	2Н
NOBIAS	$\begin{array}{c} 0.011 \pm 0.0001 \\ 24.32 \pm 1.08 \end{array}$	0.073 ± 0.003 23.72 ± 0.99	0.578 ± 0.016 26.7 ± 0.80	2.441 ± 0.036 25.25 ± 0.80	2Н
Mixture of BM and FBM	0.015 22.01	0.135 28.31	0.54 28.20	2.21 21.49	3C
NOBIAS	$0.015 \pm 0.0002 \\ 22.09 \pm 0.07$	0.136 ± 0.001 28.15 ± 0.20	0.541 ± 0.006 28.66 ± 0.26	2.191 ± 0.024 21.10 ± 0.17	3C

Table S3. NOBIAS HDP-HMM module hyperparameter settings for the simulations and experimental data in main text Figures 2 - 4.

Hyperparameter	Standard	Motion blur abundant	Motion blur sparse	Experimental
γ	0.1	0.1	0.1	0.1
а	1	1	1	1
K	5	100	10	100

Table S4. NOBIAS RNN module diffusion type classification probabilities for Brownian motion (BM), Fractional Brownian motion (FBM), Continuous Time Random Walk (CTRW), and Lévy Walk (LW). These data correspond respectively to the main text figures as indicated.

	BM (%)	FBM (%)	CTRW (%)	LW (%)	Main Text Figure	
Mixture of	6.04	90.35	2.71	0.90	2D	
BM and FBM	90.06	1.57	0.66	7.71	30	
Mixture of Four Anomalous Diffusion Types	4.41	90.89	3.63	1.07		
	91.44	0.59	0.23	7.73	2D	
	81.60	0.92	0.75	16.73	3D	
	0.33	82.59	15.26	1.82		
SusG-HT Experimental Data	0.75	53.67	44.27	1.31		
	2.36	69.10	27.27	1.28	4C	
	79.17	2.39	18.30	0.13		

Table S5. NOBIAS HDP-HMM module results for analysis of the experimental measurements of SusG-HT diffusion in the *Bacteroides thetaiotaomicron* outer membrane corresponding to main text Figure 4B. The *x*-axis and *y*-axis diffusion coefficients (D_x and D_y , respectively) are evaluated separately in NOBIAS.

	State 1	State 2	State 3	Transition Matrix
$D_x (\mu \mathrm{m}^2/\mathrm{s})$	0.013 ± 0.0001	0.043 ± 0.0003	0.675 ± 0.014	[0.933 0.067 0.1
$D_y (\mu \mathrm{m}^2/\mathrm{s})$	0.015 ± 0.0001	0.049 ± 0.0003	0.450 ± 0.009	0.098 0.897 0.005
Weight (%)	56.94 <u>+</u> 0.24	41.29 ± 0.23	1.77 ± 0.02	

Table S6. Comparison of results for analyzing simulated Brownian motion data with symmetric diffusion coefficient inputs in NOBIAS and three established nonparametric Bayesian statistics algorithms. The truncation level of NOBIAS, the max state number of vbSPT, and the starting number of states in SMUAG were all set to 10.

	Number of States	Processing Time (s)	State 1 (µm ² /s) (%)	State 2 (µm ² /s) (%)	State 3 (µm ² /s) (%)	Transition Matrix	Reference
Ground Truth Input	3	-	0.015 37.36	0.15 23.94	1.5 38.70	$\begin{bmatrix} 0.9 & 0.05 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.05 & 0.05 & 0.9 \end{bmatrix}$	-
NOBIAS	3	925	0.0154 33.53	0.1500 27.90	1.4878 38.56	0.900.070.030.080.820.100.030.060.91	current
vbSPT	3	364	0.0119 35.18	0.1076 25.90	0.9891 38.92	0.910.060.030.090.820.090.030.050.92	Persson 2013
SMAUG	3	11138	0.0161 36.50	0.1519 26.53	1.4776 38.91	0.890.080.040.110.780.110.040.070.89	Karslake 2020
Spot-On	3*	33.8	0.011 27.1	0.076 33.7	0.883 39.2	NA	Hansen 2018

*The number of states was fixed at 3 for Spot-On.

Table S7. Comparison of results for analyzing simulated Brownian motion data with asymmetric diffusion coefficient inputs in NOBIAS and three established nonparametric Bayesian statistics algorithms. The truncation level of NOBIAS, the max state number of vbSPT, and the starting number of states in SMUAG were all set to 10.

	Number of States	State 1 (µm ² /s) (%)	State 2 (µm²/s) (%)	State 3 (µm²/s) (%)	Transition Matrix	Reference
Ground Truth Input	3	$D_x: 0.021$ $D_y: 0.009$ 36.65	$D_x: 0.21$ $D_y: 0.09$ 24.49	$D_x: 2.1$ $D_y: 0.9$ 38.86	$\begin{bmatrix} 0.9 & 0.05 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.05 & 0.05 & 0.9 \end{bmatrix}$	-
NOBIAS	3	$D_x: 0.0216 D_y: 0.0094 32.82$	$D_x: 0.2025 D_y: 0.0918 28.11$	D_x : 2.0657 D_y : 0.8868 39.06	$\begin{bmatrix} 0.90 & 0.07 & 0.03 \\ 0.08 & 0.82 & 0.10 \\ 0.03 & 0.06 & 0.91 \end{bmatrix}$	current
vbSPT	4	0.0115 34.64	0.1010 24.31	0.5191 9.27 †	$\begin{bmatrix} 0.91 & 0.05 & 0.03 & 0.01 \\ 0.09 & 0.80 & 0.07 & 0.04 \\ 0.07 & 0.03 & 0.56 & 0.34 \\ 0.01 & 0.06 & 0.16 & 0.77 \end{bmatrix}$	Persson 2013
SMAUG	3	0.0153 34.04	0.1493 27.32	1.4996 38.64	$\begin{bmatrix} 0.878 & 0.086 & 0.036 \\ 0.11 & 0.75 & 0.14 \\ 0.035 & 0.09 & 0.875 \end{bmatrix}$	Karslake 2020
Spot-On	3*	0.011 27.4	0.073 33.2	0.83 39.5	NA	Hansen 2018

* The number of states was fixed at 3 for Spot-On.

[†] The vbSPT analysis indicated a 4th state with $D = 1.2249 \ \mu m^2/s$ and weight fraction = 25.38%.

Table S8. Comparison of results for analyzing experimental data in NOBIAS and two established nonparametric Bayesian statistics algorithms. The truncation level of NOBIAS, the max state number of vbSPT, and the starting number of states in SMUAG were all set to 10.

	Number of States	Running time (s)	State 1 (µm ² /s) (%)	State 2 (µm²/s) (%)	State 3 (µm ² /s) (%)	Transition Matrix	Reference
NOBIAS	3	28790.8	$D_x: 0.013$ $D_y: 0.015$ 56.94	$D_x: 0.043 D_y: 0.049 41.29$	$D_x: 0.675$ $D_y: 0.450$ 1.77	$\begin{bmatrix} 0.933 & 0.067 & 0 \\ 0.098 & 0.897 & 0.005 \\ 0.006 & 0.148 & 0.846 \end{bmatrix}$	current
vbSPT	10	10067.7	Ť	Ť	Ť	ţ	Persson 2013
SMAUG	4	264930.6	0.0025 33.1	0.0040 49.2	0.4121 1.4 *	$\begin{bmatrix} 0.92 & 0.08 & 0 & 0 \\ 0.05 & 0.88 & 0.07 & 0 \\ 0.01 & 0.20 & 0.79 & 0 \\ 0.01 & 0.02 & 0.03 & 0.94 \end{bmatrix}$	Karslake 2020

[†] The vbSPT suggested a best model of 10 states.

* The SMAUG analysis indicated a 4th state with $D = 0.0069 \ \mu m^2/s$ and weight fraction = 16.3%.

Figure S1. Performance evaluation on simulated data. All evaluations use the simulated 3-state motion blur sparse data with the parameter settings as in Table S6, aside from S4C which uses the standard abundant 3-state data. (**A**) The state label accuracy (red) is largely insensitive to the total number of steps in the SPT trajectories, while the posterior parameter sample uncertainty (the standard deviation of the diffusion coefficient, *D*, for the fastest state) improves with an increase in the amount of data amount. All tracks used for this plot are 10 steps long; the data amount was increased by increasing the number of tracks. (**B**) For the same 3-state motion blur sparse dataset, the NOBIAS module accuracy is independent of the final number of iterations beyond 2000 iterations. Inset: zoom in on iterations 0 – 2000. (**C**) The running time (blue) increases with the truncation level, *L*. where the final number of states (red) is not affected. (**D**) Tuning the sticky parameter, κ , affects the NOBIAS HDP-HMM module performance. Red solid line: average final number of states. The red dashed line indicates the true number of states. Blue line: average state label accuracy (error bars: standard deviation of accuracy over the 12 chains). All results are averaged over 12 chains.

Figure S2. Confusion matrix for classification of the diffusion type by the NOBIAS RNN module. A total of 750,000 40-step tracks of the four diffusion types were used to train the network, and 10,000 tracks were tested to get the confusion matrix.

Figure S3. Autocorrelation function (ACF) analysis for posterior samples of the diffusion coefficient of the four-state standard abundant simulation described in main text Figure 2E. Over 20,000 iterations, the number of states converges to 4 with a 2000 burn-in. The final 10,000 samples are used for further analysis.

Figure S4 (continued below)

Figure S4. Convergence of the number of diffusive states in the NOBIAS HDP-HMM module with iteration number. The number of states convergence plots in A-H correspond to the analysis of simulated tracks in main text Figure 2A-H. The number of states convergence plots in I-J correspond to the analysis of simulated tracks in main text Figure 3A,C. The number of states convergence plot in K corresponds to the analysis of experimental tracks in main text Figure 4B.

Supplementary Note: Blocked sampler for the NOBIAS HDP-HMM module

This Blocked sampler for sticky HDP-HMM is mostly based on (Fox, 2009), please find more details and alternative algorithms in the original work. Please see our open source code (https://github.com/BiteenMatlab/NOBIAS) for the implementation of this algorithm in NOBIAS.

The state sequence at the nth iteration is sampled as follows based on the state-specific transition probability $\pi^{(n-1)}$ from the last iteration, the global transition distribution $\beta^{(n-1)}$, and the emission parameters $\theta^{(n-1)}$, where $\theta = \{\mu, \Sigma\}$ include the mean and variance for the multivariate Gaussian:

- 1. Calculate the backwards message $m_{t+1,t}(k)$, where k = 1, 2, ..., L is the current state. For convenience, note that $\pi = \pi^{(n-1)}$ and $\theta = \theta^{(n-1)}$.
 - a. Initialize $m_{T+1,T}(k) = 1$.
 - b. For t = T 1, ..., 1 and k = 1, 2, ..., L:

$$m_{t,t-1}(k) = \sum_{j=1}^{L} \pi_k(j) Norm(\Delta x_t; \mu_j, \Sigma_j) m_{t+1,t}(j)$$

- 2. Forward sample state assignments sequentially in time. n_{jk} is the transition-counting variable denoting the number of transitions from state *j* to state *k*, S_k denotes the sufficient statistics for observations in state *k*. Start from $n_{jk} = 0$, S_k is set to empty, and k, j = 1, 2, ..., L.
 - a. Compute the probability for Δx_t in each state k = 1, 2, ..., L:

$$p_k(\Delta \boldsymbol{x}_t) = \pi_{\boldsymbol{z}_{t-1}} Norm(\Delta \boldsymbol{x}_t; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) m_{t+1,t}(k)$$

b. Sample the state assignment z_t at time t:

$$z_t \sim \sum_{k=1}^{L} p_k(\Delta x_t) \delta(z_t, k)$$

c. Add a count to the transition-counting variable and update the cached sufficient statistics for the new assignment $z_t = k$:

$$n_{z_{t-1}z_t} \leftarrow n_{z_{t-1}z_t} + 1 \quad S_k \leftarrow S_k \oplus \Delta x_t$$

Here, the \oplus operators means add the Δx_t to the current cached sufficient statistics.

- **3.** Sample auxiliary variables m, w, \overline{m} as follows:
 - a. For k, j = 1, 2, ..., L, and for $n = 1, 2, ..., n_{ik}$, set $m_{ik} = 0$ and sample

$$x \sim \operatorname{Ber}\left(\frac{a\beta_k + \kappa\delta(j,k)}{n + a\beta_k + \kappa\delta(j,k)}\right)$$

With *n* increments, if x = 1, increment m_{jk} by 1.

b. For j = 1, 2, ..., L, set $\rho = \kappa/(\kappa + a)$, and sample:

$$w_{j} \sim \text{Binomial}\left(m_{jj}, \frac{\rho}{\rho + \beta_{j}(1-\rho)}\right)$$
$$\overline{m}_{jk} = \begin{cases} m_{jk} & j \neq k \\ m_{jj} - w_{j} & j = k \end{cases}$$

4. Update global transition distribution:

$$\beta \sim Dir(\gamma/L + \overline{m}_{\cdot 1}, \dots, \gamma/L + \overline{m}_{\cdot L})$$

5. Update the new transition distribution and emission parameters:

$$\pi_{k} \sim Dir(a\beta_{1} + n_{k1}, \dots, a\beta_{L} + \kappa + n_{kL}, \dots, a\beta_{L} + n_{kL})$$
$$\theta_{k} \sim NIW(\theta | \lambda, S_{k})$$

6. Set $\theta^{(n)} = \theta$, $\pi^{(n)} = \pi$, $\beta^{(n)} = \beta$.

Supplementary Reference

Fox, E. B. (2009). Bayesian nonparametric learning of complex dynamical phenomena. Ph.D. thesis, MIT, Cambridge, MA, 2009.