Acacia auriculiformis Derived Bimodal Porous Nanocarbons via Selfactivation for High Performance Supercapacitors

Supplementary Information

Figure S1. TEM images and measurement of particle sizes of AAC400 (A), AAC600 (B), AAC800 (C) and AAC1000 (D).

Figure S2. Elemental compositions of AACs obtained from SEM coupled with EDS

Figure S3. XRD patterns of AACs

Figure S4. Raman spectra of AACs with I_D/I_G value calculated for respective AACs.

Figure S5. FTIR spectra of carbon precursor and all the synthesized AACs.

Figure S6. N_2 adsorption-desorption isotherms for AAC400 (A), AAC600 (B), AAC800 (C) and AAC1000 (D).

Figure S7. CV and GCD plot of AAC600 (A & C) and AAC1000 (B & D)

Figure S8. CV of OSSc operated at 1.0 V (A), 2.0 V (B) and 2.7 V (C) at different scan rates (5-100 mV/s).

Table S1. Energy parameters of OSSc at 2.3 V

Current density (A/g)	Specific capacitance (F/g)	Energy density (Wh/kg)	Power density (W/kg)
0.1	52.3	16.7	98.0
0.25	48.3	15.4	252.5
0.5	45.1	14.4	513.5
0.75	44	14.1	778.5
1	43.2	13.8	1057.0
2.5	38	12.1	2300
5	37.6	12.0	2882.7