Methods ### **Patients** This study was undertaken at Children's Hospital of Chongqing Medical University (CQMU). Both patients were admitted to hospital due to joint pain. After excluding infection and cancer, they were suspected of having JIA and were treated accordingly. However, they responded poorly. Therefore, DNA sequencing was carried out. The study was approved by the Ethics Committee of Children's Hospital of CQMU (2020-244-1) and complied with the tennets of the Declaration of Helsinki. Informed consent was obtained from both participants and their legal guardians. ### Literature review Since Zankl et al. first reported that a mutation in *MAFB* was responsible for MCTO in 2012, we searched for articles published between 2012 and January 2021 using the keywords "Multicentric carpo-tarsal osteolysis syndrome (MCTO)" or "MAF bZIP transcription factor B (MAFB)" in the PubMed, Google Scholar, Medline, Wanfang Med Online, and China National Knowledge Infrastructure (CNKI) databases. Only clear cases with a confirmed genetic diagnosis were reviewed and assessed as part of this study. In addition, references cited in important and significant articles were scanned. All hits from these sources were cross-checked. ### Genetic analysis DNA obtained from the two children, named patient 1 (P1) and patient 2 (P2), was subjected to whole-exome sequencing and targeted gene sequencing (MyGenostics, Beijing, China), as previously described(1,2). Mutations in the *MAFB* gene were verified by Sanger sequencing (MyGenostics) using the following primer pair targeting exon 1 of the *MAFB* gene: F (5'- GACGCTTGGTGATGATGGTG-3') and R (5'- CTCTTCTCCGCTCTTCCCC-3'). **Supplementary Fig. S1. Pedigree and sequence chromatograms of both patients and their parents.** (A) Patient 1 carries the *de novo* heterozygous mutation c.188 C>A (p. P63Q), and patient 2 (B) has the *de novo* heterozygous mutation c.161 C>T (p. S54L), in the *MAFB* gene. Both mutation loci are highly conserved (C, D). Supplementary Fig. S2 Mafb domain structure and the location of observed mutations in MCTO patients Each position indicates the amino acid substitution of the observed mutations in patients where mutations were previously reported for multicentric carpotarsal Osteolysis (MCTO). MCTO is known to be caused by a missense mutation in the transactivation domain. The red one indicates our patients' gene mutations. # (in blue) indicates sporadic cases, @ (in red) indicates familial cases. ## Supplementary Table S1. Summary of reported MAFB mutations in the MCTO patients | MAFE | 3 mutation | Pro | obands | Reference | |------------|------------|----------------|--------------|-------------------------------| | Nucleotide | Amino acid | Sporadic | AD familial | | | change | change | case | transmission | | | 161 C>G | Ser 54 Trp | 1 | | (3) | | 161 C>T | Ser 54 Leu | 2 | 7P/2F | (4,5), patient 2 in our study | | 167 C>T | Ser 56 Phe | | $1P/1F^a$ | (6) | | 173 C>T | Thr 58 Arg | 1 | | (2) | | 176 C>T | Pro 59 Leu | 3 ^b | $2P/1F^{c}$ | (3,4,7,8) | | 183 C>A | Ser 61 Arg | 1 | | (9) | | 184 A>C | Thr 62 Pro | 1 | | (4) | | 185 C>T | Thr 62 Ile | 1 | | (7) | | 188 C>G | Pro 63 Arg | 2 | | (3,4) | | 188 C>T | Pro 63 Leu | 2 | 2P/1F | (3,10) | | 188 C>A | Pro 63 Gln | 1 | | Patient 1 in our study | | 194 G>T | Ser 65 Ile | 1 | | (3) | | 197 C>G | Ser 66 Cys | 2 | | (4,11) | | 206 C>T | Ser 69 Leu | 4 | $4P/2F^{d}$ | (3,4,12,13) | | 208 T>G | Ser 70 Ala | 1 | | (4) | | 209 C>T | Ser 70 Leu | 3 | | (4,7) | | 211 C>G | Pro 71 Ala | 1 | | (9) | | 211 C>T | Pro 71 Ser | 3 | | (4,7) | | 212 C>T | Pro 71 Leu | 3 | | (4,9,14) | a, The same *MAFB* mutation was found in the proband's unaffected mother, sister, and maternal grandmother; b, one of the proband's parents had no sample available for gene testing; c, the mother, who had clinical manifestations of MCTO, did not undergo gene testing; d, two patients were reported by both Mumm et al. (2014) and Regev et al. (2020). P, patient; F, family. ### Supplementary Table S2 Summary of the clinical characteristics of reported MCTO patients with MAFB mutations | Patients | Symptom onset(years) | Initial
diagnosis
(years) | Age at
MCTO
diagnosis
(years) | Other Joints
(except wrists and
ankles) affected | Treatment and effectiveness | Renal findings | Eye problems | Facial abnormality | Other manifestations | Reference | |----------|-------------------------------------|---------------------------------|--|--|---|---|--|---|---|-----------| | P1-P11 | NA | NA | NA | NA | NA | Five had undergone renal transplantation, three had markedly impaired renal function but did not yet require dialysis. Three had no evidence of renal | NA | NA | NA | (4) | | P12-P14 | NA | NA | NA | NA | NA | dysfunction. no evidence of renal dysfunction no evidence of renal dysfunction, an exception of one | NA | NA | NA | (4) | | P15-P18 | NA | NA | NA | NA | NA | individual who at a very old age developed renal dysfunction | NA | NA | NA | (4) | | P19 | R hand pain and swollen wrists(4y); | JIA | NA | NA | NA | NA | NA | NA | an Arnold-Chiari
malformation type I.
During late puberty,
androgenetic
alopecia and slight
non-immunological
bilateral
exophthalmos | (6) | | P20 | wrists pain (2y) | ЛА (2у) | 17y | elbows, knees,
hips, | salicylate(2y, no
effective); Multiple
orthopedic surgeries
(childhood); | terminal renal
insufficiency (17y),
Peritoneal dialysis,
and renal
transplantation (8m
later) | band keratitis with bilateral anterior stromal corneal opacities without | hypertelorism,
exophthalmia,
synophrys,
hypoplastic
alienate,
protruding
columella, and | Diaphragmatic
hernia and
underwent surgery
(at birth); recurrent
ENT complications
(5y); EBV+ B cell | (3) | | P21 (son) | left ankle pain (1y) | NA | 11y | elbows, knees,
hips, and thoracic
scoliosis(18y) | orthopedic surgeries (15-16y); thoracic vertebral arthrodesis (18y); etanercept (5y-20y, pain release) | mild proteinuria
(11y) and regular
follow-up of
proteinuria; enalapril
(15y) +losartan(16y) | NA | NA | NA | (3) | |---------------------------|--|-----------------------------|-----|--|--|--|----|----|---|-----| | P22
(Father
of P21) | NA | NA | 20y | elbows, knees | NA | renal insufficiency,
renal transplantation
(20y) | NA | NA | NA | (3) | | P23 (son) | asymptom, but
skeletal
radiographs
showed carpal
osteolysis(5y10m) | NA | 6y | phalanges of
thumbs and
forefingers | NA | HUS, bilateral renal
hypoplasia (5y10m),
dialysis, renal
transplantation (6.5y) | NA | NA | several bronchiolitis
and asthma in child
hood; | (3) | | P24
(Mom
of P23) | carpal and tarsal osteolysis(2y) | Haidu
Cheney
syndrome | 2y | distal forearms | None | high BP and proteinuria, but normal renal function (during first pregnancy at 29y), and symptoms resolved after delivery, preeclampsia with high BP and severe proteinuria, normal renal function (during 2 nd pregnancy, 35y); acute renal insufficiency and bilateral renal hypoplasia(42y); Dialysis was | NA | NA | NA | (3) | lymphoma with (28y) a chin dimple. corneal thinning # needed, waiting for renal transplantation | P25 | left ankle
arthritis(3y) | Septic
arthritis
(3y); Torg
Winchester
syndrome
(7y) | NA | left knee (10y),
left elbow (11y) | surgical management (3y), casts and NSAIDs (10y); etanercept 12y (no effective, withdraw in 6m), physiotherapy (13y) | no renal impairment | NA | hypertelorism,
high nasal
bridge, and
synophrys | NA | (3) | |-----|--|---|--------------------|--------------------------------------|--|--|------------------|--|--|-----| | P26 | wrist and foot
abnormalities
(early childhood) | NA | early
childhood | NA | NA | terminal renal
insufficiency (17y),
Peritoneal dialysis
was used until
kidney
transplantation (18y) | NA | NA | epileptic seizures
from age 4 to 12
years, and was
treated by valproate | (3) | | P27 | swollen wrists (6m) | NA | 2y | right ulnar | NA | Normal renal function | NA | NA | NA | (3) | | P28 | Birth | ЛА 2.5у | 3y | shoulders, knees, elbows | NA | proteinuria (3 y) | corneal clouding | NA | NA | (7) | | P29 | 6m | ЛА | 1.5y | elbows | NA | proteinuria (4 y),
renal transplant
(11y) | corneal clouding | NA | NA | (7) | | P30 | 2m | | 1.5y | elbows, knees | NA | proteinuria (21 m),
unsuccessful renal
transplant (9 y) | none | NA | NA | (7) | | P31 | 2m | Rickets | 3у | TMJ, shoulders, knees, elbows | NA | proteinuria (5 y) | none | NA | NA | (7) | | P32 | 2.5y | ЛА | 14y | elbows | NA | proteinuria (7
y),renal transplant
(17 y) | none | NA | NA | (7) | | P33 | NA | JIA 6y | 11y | elbows | NA | proteinuria (14y) | none | NA | NA | (7) | | P34 | 12m | ЛА | 6.5y | elbows | NA | none | corneal clouding | NA | NA | (7) | | P35 | 20m for symptoms | JIA (5 y) | 5.5y | elbows, knees | Denosumab (less
pain and increased
daily activities with
improved R wrist
function, osteolysis
stabilized) | none | none | NA | NA | (7,13) | |------------------------|--|-----------|------|--|---|---|------|--|---|--------| | P36
(Mom
of P35) | 3y | JIA | 38y | cervical spine,
elbows, PIP joints
of Hands | NA | renal failure, shrunk
kidney | none | NA | NA | (7,13) | | | | | | | NSAIDs, MTX(no | | | | | | | P37 | claudication
symptoms (26m) | JIA | 15y | feet and pes cavus. | effective); infliximab (5y, pain decreased and eventually disappeared, progressive osteolysis); tocilizumab (8y, after three months treatment, the pain and tenderness disappeared) | NA | NA | micrognathia,
hypotelorism,
chubby cheeks,
and flat face. | NA | (15) | | P38 | wrists, elbows,
and shoulders
pain and scoliosis
(8y) | JIA | 16y | elbows, shoulders,
hips, and severe
thoracic scoliosis | decompression and
spinal fusion(12y),
Combined Arthritis
Program (CAP,16y),
Total Hip
Arthroplasty (16y) | bilateral renal cysts,
and non-nephrotic
range proteinuria
(12y) | NA | mid-face
hypoplasia,
exophthalmos,
micrognathia, | severe Chiari I malformation with herniation; mild dilatation of the aortic root and a restrictive pattern on pulmonary function tests without parenchymal lung disease; mild central obstructive sleep apnea | (8) | | P39 | R wrist pain (4y) | NA | 13y | ulna and radius | intra-articular injections of glucocorticoids, methotrexate(4 y); etanercept (7y)(progressive Bone destruction); | Concomitant
proteinuria and
kidney biopsy (13y),
which revealed
low-grade focal
glomerulosclerosis | NA | NA | NA | (5) | denosumab (18y, reduce the inflammation) | P40 | 6m | NA | 14y | elbows, all fingers,
knees, feet | NA | Ultrasonography showed a small size of both kidneys, end-stage renal disease ((oliguria, anemia, and failure to thrive, 12y); dialysis and medications (erythropoietin, ferrous fumarate, calcitriol, and elemental calcium) asymmetry in the size of the kidneys | cloudy
cornea,
exophthalmos, | underdeveloped
alanasi,
maxillary
hypoplasia, and
micrognathia | Echocardiography
demonstrated left
ventricular
hypertrophy;
tonic-clonic seizure
from hypercalcemia
(12y) | (11) | |-----|---|---------|-----|-------------------------------------|---|---|------------------------------------|--|---|------| | P41 | wrists and ankles
(toddler) | NA | | elbow, right
femoral epiphysis | NA | (2y); significant
kidney hypoplasia of
the right kidney, the
left kidney was
compensatorily | NA | triangular face,
eye-bulging,
micrognathia | olecranon bursitis,
marfanoid habitus,
cachexia, cutis laxa | (10) | | P42 | deformity of the left foot and pain in the right wrist (2y) | ЛА (2у) | | mandible and
elbows, knees | prednisolone,
methotrexate, and
ibuprofen (no
effective);
alendronate (9y, no
effective) | hypertrophic, 13y);
normal renal
function
proteinuria(4y), oral
steroid and enalapril,
and proteinuria
maintained; kidney
biopsy revealed
FSGS, NOS variant;
chronic hemodialysis
(5y), kidney
transplantation (6y) | NA | Not mention | cleft palate, did
corrective surgery
(3y) | (9) | | P43 | deformity of the right thumb (12y) | JIA (12y) | 14y | multiple PIP
joints | correctional surgery, ibuprofen (14y, No effective) | isolated 2+ proteinuria (12y), A kidney biopsy revealed FSGS, NOS variant (14y); enalapril. A kidney ultrasonogram | NA | Not mention | not mention | (9) | |------------------------|--|---|------|---|--|--|------|--|--|------| | P44 | tenderness hands
and feet (3m) | NA | | elbow, and knees | NA | revealed diffusely increased renal parenchymal echogenicity, proteinuria (14m); normal renal function with spontaneous remission of proteinuria (22m), normal (4y) | NA | NA | an abdominal aortic
aneurysm (14m) | (9) | | P45 | wrists pain and
the bottom of his
right foot with
morning stiffness | ANA+
pJIA (6y) | 7.5y | feet, right
temporomandibular
joint, and PIP
joints of fingers | 5y: MTX, etanercept, infliximab, abatacept, and tocilizumab, pamidronate (progressive arthritis); adalimumab | None | None | prominent
forehead,
maxillary
hypoplasia, and
bilateral
palpebral
ptosis, as well
as a long
philtrum and
bulbous nose
wide-set eyes, | speech and walking
delay, Learning
disability, Hearing
impairment | (12) | | P46
(Mom
of P45) | wrists and elbows
pain (5y) | erosive
arthritis
(late
childhood) | 33y | elbows, feet | NA | NA | NA | triangular face,
small and thick
ears,
hypoplastic
nares, a
bulbous tip of
the nose, and
micrognathia | Learning disability | (12) | | P47 | NA | NA | 7y | hands, elbows,
and scoliosis | surgical treatment for scoliosis. | Diagnosed with
FSGS due to
proteinuria (3y)
proteinuria, no renal | NA | a small
forehead and
hypotelorism; | NA | (16) | | | | | | | | dysfunction or hypertension | | | | | | |-----|---|-----------------|-------|--|--|---|------|---|--------------------|------------------------------|--| | P48 | multiple bone deformities and an inability to walk (1.5y) | NA | 10y | | Bone biopsy (5y); | 1+ proteinuria
without hematuria
(5y); deteriorated
renal function (10y);
Shrunk kidney,
hemodialysis (10y),
kidney transplant
(11y) | None | triangular face,
micrognathia,
and
exophthalmos | None | (2) | | | P49 | Elbow and knee flexion (6m) | None | 1.9y | Elbows, knees, and feet | Alfacalcidol | None | None | None | Mental Retardation | (14) | | | P50 | Right Wrist pain (2y) | JIA (2y) | 12.7y | Elbows | NSAIDs, DMARDs (LEF, MTX), and Pavlin (2-7y, joint pain and swelling were relieved and disappeared); naproxen, diclofenac sodium, NSAIDs, MTX, SSZ, etanercept, infliximab (11-13y, not practical); Denosumab (13y, joint pain released) | proteinuria | None | subtle facial
abnormalities
of protruding
forehead and
micrognathia | None | Patient1
in our
study | P: patient; JIA: Juvenile idiopathic arthritis; MCTO: Multicentric carpo-tarsal osteolysis syndrome; NA: not available; R: right; LEF: | | P51 | Wrists pain
(11y9m) | JIA
(11y10m) | 12.1y | multiple proximal
interphalangeal
joints | naproxen , MTX, calcium, adalimumab, not effective | None | None | None | None | Patient 2
in our
study | leflunomide; MTX: Methotrexate; SSZ: Sulfasalazine; FSGS: Focal Segmental | Glomerular Sclerosis; NOS: not otherwise specified; TNF α : Tumor Necrosis Factor α ; NSAIDs: nonsteroidal anti-inflammatory drugs; DMARDs: disease modifying antirheumatic drugs; CAP: Combined Arthritis Program; PIP: proximal interphalangeal ### References - 1. Jiang J, Tang W, An Y, Tang M, Wu J, Qin T, Zhao X. Molecular and immunological characterization of DNA ligase IV deficiency. *Clin Immunol* (2016) **163**:75–83. doi:10.1016/j.clim.2015.12.016 - 2. Li J, Shi L, Lau K, Ma Y, Jia S, Gao X. Identification of a novel mutation in the MAFB gene in a pediatric patient with multicentric carpotarsal osteolysis syndrome using next-generation sequencing. *Eur J Med Genet* (2020) **63**:103902. doi:10.1016/j.ejmg.2020.103902 - 3. Mehawej C, Courcet JB, Baujat G, Mouy R, Gérard M, Landru I, Gosselin M, Koehrer P, Mousson C, Breton S, et al. The identification of MAFB mutations in eight patients with multicentric carpo-tarsal osteolysis supports genetic homogeneity but clinical variability. *Am J Med Genet Part A* (2013) **161**:3023–3029. doi:10.1002/ajmg.a.36151 - 4. Zankl A, Duncan EL, Leo PJ, Clark GR, Glazov EA, Addor MC, Herlin T, Kim CA, Leheup BP, McGill J, et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. *Am J Hum Genet* (2012) **90**:494–501. doi:10.1016/j.ajhg.2012.01.003 - 5. Zhuang L, Adler S, Aeberli D, Villiger PM, Trueb B. Identification of a MAFB mutation in a patient with multicentric carpotarsal osteolysis. *Swiss Med Wkly* (2017) **147**:w14529. doi:10.4414/smw.2017.14529 - 6. Dworschak GC, Draaken M, Hilger A, Born M, Reutter H, Ludwig M. An incompletely penetrant novel MAFB (p.Ser56Phe) variant in autosomal dominant multicentric carpotarsal osteolysis syndrome. *Int J Mol Med* (2013) **32**:174–178. doi:10.3892/ijmm.2013.1373 - 7. Mumm S, Huskey M, Duan S, Wenkert D, Madson KL, Gottesman GS, Nenninger AR, Laxer RM, McAlister WH, Whyte MP. Multicentric carpotarsal osteolysis syndrome is caused by only a few domain-specific mutations in MAFB, a negative regulator of RANKL-induced osteoclastogenesis. *Am J Med Genet Part A* (2014) **164**:2287–2293. doi:10.1002/ajmg.a.36641 - 8. Sun K, Barlow B, Malik F, Inglis A, Figgie M, Goodman S. Total Hip Arthroplasty in a Patient with Multicentric Carpotarsal Osteolysis: a Case Report. *HSS J* ® (2016) **12**:177–181. doi:10.1007/s11420-015-9478-0 - 9. Park PG, Kim KH, Hyun HS, Lee CH, Park JS, Kie JH, Choi YH, Moon KC, Cheong H II. Three cases of multicentric carpotarsal osteolysis syndrome: A case series. *BMC Med Genet* (2018) **19**:1–7. doi:10.1186/s12881-018-0682-x - 10. Stajkovska A, Mehandziska S, Stavrevska M, Jakovleva K, Nikchevska N, Mitrev Z, Kungulovski I, Zafiroski G, Tasic V, Kungulovski G. Trio clinical exome sequencing in a patient with multicentric carpotarsal osteolysis syndrome: First case report in the Balkans. *Front Genet* (2018) **9**:1–6. doi:10.3389/fgene.2018.00113 - 11. Choochuen P, Rojneuangnit K, Khetkham T, Khositseth S. The First Report of Multicentric Carpotarsal Osteolysis Syndrome Caused by MAFB Mutation in Asian. *Case Rep Med* (2018) **2018**: doi:10.1155/2018/6783957 - 12. Upadia J, Gomes A, Weiser P, Descartes M. A Familial Case of Multicentric Carpotarsal Osteolysis Syndrome and Treatment Outcome. *J Pediatr Genet* (2018) **07**:174–179. doi:10.1055/s-0038-1657760 - 13. Regev R, Laxer R, Whitney-Mahoney K, Elia Y, Noone D, Shammas A, Reza V, Sochett EB. MON-LB72 Multicentric Carpotarsal Osteolysis Syndrome (MCTO) Has a Generalized High Turnover Bone Phenotype, High S RANKL and Responds to Denosumab. *J Endocr Soc* (2020) 4:771–772. doi:10.1210/jendso/bvaa046.2142 - 14. Zhi-kuan G, , ZHAI Hong-yin, ZHANG Yong TP. Multicentric carpotarsal osteolysis syndrome: a case report GUO. *CHIN J Osteoporos BONE Min RES Vol* (2019) **12**:8–12. doi:10 . 3969/j.issn.1674-2591 . 2019 . 06 . 008 - 15. Nishikomori R, Kawai T, Toshiyuki K, Oda H, Yasumi T, Izawa K, Ohara O, Heike T. Remarkable improvement of articular pain by biologics in a Multicentric carpotarsal osteolysis patient with a mutation of MAFB gene. *Pediatr Rheumatol* (2015) **13**:P152. doi:10.1186/1546-0096-13-s1-p152 - 16. Miyazaki K, Komatsubara S, Uno K, Fujihara R, Yamamoto T. A CARE-compliant article: A case report of scoliosis complicated with multicentric carpotarsal osteolysis. *Medicine (Baltimore)* (2019) **98**:e17828. doi:10.1097/MD.0000000000017828