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Abstract	Comment by Vignoli Michela: The abstract and introduction have been revised to improve the clarity of the scope of our study.

Comment Reviewer 1: The main findings are multifold since they address the workings of ML, a research into science communication, and how science communication and foresight are or can be related. To be honest, it is a bit difficult to me to understand what the main goal of the research is and therefore also to understand the findings. Is it how foresight-related science communication operates in this covid-era or is it about how to improve ML for sceince communication?
[bookmark: _Hlk94179246]In view of the many discussions about uncertainty regarding the further development of the Covid-19 pandemic and its effects on the economy and society, we observed that the crisis led to an increased presence of individual researchers and experts making forward-looking statements on impacts of the Covid-19 pandemic or stating trends in mass media publications. From a strategic foresight research perspective, there is a need to further analyse an increase of future-oriented expert statements in public media in a context of high uncertainty like the impacts of the Covid-19 pandemic and related crises. Given the increasing amount of media texts available for web-based scanning and text analysis, Machine Learning (ML) is a promising approach for text analysis of big data, which raises high expectations also in the field of foresight, in particular in context of scoping and scanning activities for weak signal detection and text analysis for sense-making processes. In this study, we apply a natural language processing (NLP)-based ML approach to analyse a large corpus of news articles from web sources to explore the potential of applied ML to support sense-making in the field of foresight, specifically for the analysis of future-related statements or predictive statements in media. The results underline the potential of ML approaches as a heuristic tool to support sense-making in foresight processes and research, in particular by pre-structuring large datasets (e.g., news articles around a particular topic of public debate). ML can provide additional insights for actor analysis associated with a specific topic of public debate from a large data corpus. At the same time, our results show that ML models are limited in their ability to provide solid evidence and that they can also lead to fallacies. Therefore, ML can only be considered as a heuristic tool supporting specific steps in a sense-making process and development of further research questions, as well as encouraging reflection on the application of ML-based approaches in foresight.	Comment by Kimpeler, Simone: in diesem Satz müssen wir noch besser auf den punkt bringen, was unser FS-research interest in dem Fallbsp. hier ist. (im Anschluss folgt ja gut unser zweites Interesse in ML, aber auch für das Fallsbp. sollten wir eine Begründung haben)
In an explorative approach, we tested if Machine Learning can be applied to identify forward-looking or prognostic statements in contemporary news articles, the persons connected to those statements, and to verify if the statements made match the persons’ expertise, through the use of additional contextual information. The goal was to explore the potential of semi-automated methods already in use for horizon scanning to support sense-making and evaluation processes, in particular for foresight and science communication research. In this paper, we explain the applied method, key results, and discuss limitations, challenges, and opportunities of the proposed approach.
Introduction 	Comment by Vignoli Michela: First, we included additional references in 1. and 2.1. to outline our framework of Foresight more clearly, thus addressing a comment by Reviewer 1. We shifted the focus to the connection between horizon scanning and machine learning approaches instead to foresight expertise. The connection of horizon scanning and ML is essential for our classification and analysis.

Second, we shifted the focus away from experts and expertise to actors and actor types behind the extracted statements. We agree with Reviewer 1 that scientific reputation is a difficult indicator for foresight expertise. We believe that using a systems analysis typology of actors in innovation systems provides additional contextual information for actors and their roles in shaping future-oriented public discourses.  

Comment by Reviewer 1:
In addition: I think that the the cocnepot of foresight deserves much more attention. Not much literature has been used to define it which also leads to some errors, such as that foresight knowledge is aimed at reducing uncertainty and the division between foresight expertise and foresight knowledge is not very familiar to me (and I work quiet some time in this field). In addition, foresight knowledge in itself is a difficult concept. The quality of it depend on how this knowledge had been generated which is not to easy to trace back, especially in the literature the authors have used for their analysis. Stating that the quality of a certain 'foresight statement' depends on the expert is also a tricky one. The best futures researchers (both academic and non-academic) are not so much experts in the sense of being specialist but being generalists. The scientific reputation is therefore a difficult indicator.
[bookmark: _Int_Cl1ZRnA1][bookmark: _Int_ZmDVXDpT]Since the start of the Covid-19 pandemic, the presence of scientific experts from various research fields has increased sharply in public media (Ioannidis et al. 2021), social media (Ahmed et al. 2020, Chipidza, et al.) and the news (Krawczyk, Chelkowski, Laydon 2021). The Covid-19 pandemic is described as the most critical science communication challenge (O’Connor at al. 2021). These developments are also a new methodological challenge for the practice field of strategic foresight, as forward-looking statements are gaining importance in the context of scientifically based statements about the medium- and long-term effects of the Covid-19 pandemic on society and the economy. For foresight research and future analysis, two aspects in particular are exciting from our point of view: It can be expected that, on the one hand, this will increase the number of future-oriented statements and even predictions of the future in general, as well as the breadth of scientific expertise, with regard to future statements in the thematically focused area of the consequences of the pandemic. On the other hand, this increase should also make it possible to obtain a larger number of future statements from different research areas, which can be evaluated in terms of content for various activities within the framework of strategic foresight, e.g., scenario development, or the derivation of policy options. The latter is the so-called sense-making phase, in which candidate signals for change are evaluated in terms of their relevance to concrete issues and needs for action. Sense-making in foresight processes can be defined as a cognitive process that supports the dealing with uncertainties and the unknown in decision making and to structure the unknown by linking signals of change to better understand complex cross-impacts and to inform decision-making.
To further investigate this hypothesis, specifically how the sense-making based on cognitive processes could be supported by the evaluation of larger amounts of data with a semi-automated Machine Learning (ML) approach, we chose a public news media data corpus to search for insights and evidence for the increase in forward-looking statements by actors in the news and public media from different research fields since the outbreak of the Covid-19 pandemic. The goal was to explore the potential of such an ML approach to identify evidence in a large data corpus of news articles for sense-making processes in foresight endeavours.
Starting with a scanning activity, we used text mining and an NLP model within a ML approach to identify forward-looking statements related to Covid-19 in a large data corpus of online news articles. In the next step, we tried to make sense out of the identified statements (assessment of the relevance and novelty of the content) and again applied a ML approach to gain further insights from the context of the identified statements (such as information on the actors associated with the content). In a last step, we tried to integrate our different and interdisciplinary learning experiences from applying ML into a strategy for future research by highlighting challenges and opportunities of ML to support sense-making processes in foresight. While Geurts et al. (2021) already provide evidence for the usefulness of ML in the horizon scanning phase, the question remains as to how far ML can contribute to sense-making and strategy development activities.
The ongoing Covid-19 pandemic has led to a strong impact on science communication in the media, driven by the high uncertainty and relatively little knowledge about the influencing factors and increased interest of public audiences and journalists for scientific progress and prospective knowledge related to the topic. In this context, we could observe an increased presence of individual researchers and experts making a variety of forward-looking statements or stating trends and impacts on society or economy in mass media publications. 
Geurts et al. (2021)But to what extent are the individual forecasts underpinned by scientific evidence, and what relevance does the postulated future-oriented knowledge have? Especially in times when trust in mass media is decreasing, and the demand for evidence-based information is high it is important to have an open debate about what constitutes relevant and reliable foresight knowledge, and to take a look at how current discussions and innovative methods such as Machine Learning (ML) live up to this.
In this explorative work, we discuss the potential of ML tools for identifying forward-looking statements in contemporary news articles; identifying the persons connected to those statements; as well as assessing their scientific background and if it matches the subject of discussion. Additionally, we investigated the potential contribution of the evidence found to the assessment of forward-looking knowledge. 
In this paper, we follow a systemic foresight approach, which builds on horizon scanning and sense-making methods to explore possible futures and apply ML specifically for improving sense-making activities by analysing large amounts of data that contain future-oriented statements in the context of the Covid-19 pandemic. We present the first results of an empirical study based on a semi-automated method to identify and extract forward-looking statements and names of actors mentioned in context of the statements from full texts of online news articles. The chosen methodological approach as well as underlying concepts and definitions are explained in more detail in sections 2 and 3. 
To our knowledge, the approach to apply ML technologies to identify forward-looking statements in news articles is a novel application area, which promises to provide relevant insights for science communication research as well. Given the complexity of the subject, we deliberately took a generic approach and did not restrict our view to a particular foresight objective or rational.Results of this first attempt to apply ML- techniques for assessing identifying evidence for foresight knowledge and science communication are included in section 4 Results.
A key question of our study was how well the chosen methodology is able to support sense-making and evaluation processes in foresight and science communication. In the final chapter, we conclude to which extent our proposed approach has the potential to provide an evidence-base for identifying forward-looking statements and related actors in news articles. Limitations of the chosen approach, such as 1) limited adequacy and quality of the used datasets; and 2) limitations to a generic working-definition of “forward-looking statements” and “experts”, are discussed as well. In section 0 , we discuss challenges and opportunities that applied ML techniques offer in context of foresight and science communication practice, as well as potential future research directions.
[bookmark: _Ref75504927]Material and Methods
[bookmark: _Ref76633299] What is Foresight knowledge?	Comment by Vignoli Michela: See previous comment. We included additional references in 1. and 2.1. to outline our framework of Foresight more clearly, thus addressing a comment by Reviewer 1.

Also, we included the limits of our approach from section 5 (discussion) to section 2 in response to the comment by Reviewer 1 (text parts in dark green):

[…] I think that the authors should have addressed their reservations and limitations made in that section at the beginning of their research.  
Foresight is a broad field of practice that aims at generating robust knowledge of the possible futures and thus at reducing uncertainty and complexity for strategic decision-making, e.g. at the science-policy interface (Robinson et al. 2021). Foresight approaches engaging and using the collective knowledge of a public vary widely[footnoteRef:2]. Two loose and open concepts that are extensively applied in foresight practice and subject to constant deliberation are relevant to contextualise our empirical study: “foresight expertise” and “foresight knowledge”. Foresight expertise includes substantial knowledge in selected areas of interest (depending on the objective and rationality of a specific foresight activity). This aspect of expertise relies to a certain extend on (interdisciplinary) scientific knowledge (next to societal and policy issues) and mainly serves as input to a foresight exercise. In order to make robust forward-looking statements a foresight expert also needs the ability to (creatively) extend this knowledge to the future and to assess its plausibility subsequently (Loveridge 2004, 38). Imagination and creativity are key requirements for this endeavour (Loveridge 2004, 38). Although individual foresight expertise is a prerequisite input for foresight processes, fForesight is ostensibly a "systematic, participatory, future-intelligence-gathering and medium-to long-term vision-building process aimed at present-day decisions and mobilising joint actions" (Gavigan et al. 2001, 3).  [2: ] 

Foresight is a systemic approach for strategic forward-looking activities of exploring multiple futures (EC 2020) in a structured way and a broad field of research and practice at the interface of policy and science, which aims at generating forward-looking knowledge and enhancing anticipatory capacities to support decision-making and dealing with uncertainties (Robinson et al. 2021). In many foresight processes, it is key to involve experts, stakeholders, and citizens in creative sense-making workshops and strategic dialogues about the future of complex issues (or complex futures). It is important to understand that foresight is “not about predicting the future but about exploring different plausible futures that could arise and the opportunities and challenges they could present" (EC 2020). In this sense, strategic foresight is different from forecasting. While forecasting attempts to predict a single "correct" version of the future based on data from the past, evidence and probability (e.g., mathematical modelling), foresight uses multiple alternative plausible futures based on plausible combinations of various possible developments of influencing factors in order to identify future risks and challenges under uncertainty. Besides its systematic, participatory, future-intelligence-gathering character, the more qualitative oriented foresight often aims at medium- to long-term vision-building process for present-day decisions or mobilisation of joint actions (Gavigan et al. 2001, 3). In the latter definition, the emphasis lies on the interaction of multiple actors involved in the process of generating and deliberating foresight knowledge and overcoming individual and institutional filters of perception and biases of future assumptions (Warnke and Schirrmeister 2016, Rosa et al. 2021). Both quantitative and qualitative methods are often combined  in foresight processes, and with the increasing digitisation and availability of big data, the interest in deploying semi-automated or automated methods to explore large amounts of data is also growing in this field (cf. Geurts et al. 2021).
The architectures and forms of implementation of foresight processes in organisations vary widely, depending on the specific objective and context of the foresight. For this study, we refer to a   framework that identifies three distinctive activities in a full-cycle foresight process: 1) Horizon scanning to identify weak signals of change in society, technology, economy, ecology and politics (STEEP); 2) Insight and sense-making activities to reflect on cross-impacts between the trends and drivers and develop a variety of plausible scenarios and visions of preferred futures; 3) Strategy development by analysing scenarios, strength and weaknesses or gaps between actions needed and current strategies. In some contexts, in particular in strategic foresight for organisations, a fourth phase could be added: 4) Implementation and action, to start the actions, which could be outlined in a roadmap or strategic, plan, and monitor its achievements. (Cuhls et al. 2015) (see Figure 1: Foresight cycle).
It is important to note that these activities are not separated steps in the process, but rather interrelated in practice. For example, the transition between horizon scanning and sense-making is fluid, and the strategy development phase may again involve scanning and participatory sense-making methods.
Foresight approaches engaging and using the collective knowledge of larger communities or the public vary widely[footnoteRef:3]. An open concept that is extensively applied in foresight practice and subject to constant deliberation is relevant to contextualise our empirical study: “futures literacy”. The UNESCO has successfully established the futures literacy approach with chairs in foresight around the globe, promoting futures literacy as a capacity to analyse futures-related information and insights, and to use futures (images, scenarios and narratives of possible futures) in today's decision-making (Riel Miller 2019: Transforming the Future, UNESCO, Paris). Since the future is uncertain, climate change, pandemics or economic crisis challenge the individual and collective images and narratives of the future that are used to make decisions today, the knowledge about the future, or “foresight knowledge” is mainly depending on the often non-reflected practices used to generate visions. An assessment of imaginaries and narratives of the future in a society (Jasanoff & Kim 2015) as shared for instance in public media discourses must take particular account of the content and the individual and group sense-making processes involved.	Comment by Vignoli Michela: fix citation format & add to reference list [3:  For an overview on foresight and foresight methodology see Georghiou et al. (2008) or Loveridge (2009).] 

Therefore, strategic foresight is decisively dependent on the scanning of content and text data and the analysis of spotted signals of change. about trends derived from a horizon scanning and Furthermore, the combination of different stakeholder and scientific expert perspectives in order to make sense out of the data is decisive in the context of the strategic decisions – that is considered the best or most relevant knowledge on a specific issue (Loveridge 2004, 46).  Foresight exercises, which are based on scientific expertise often do not make the selection process transparent and seldom examine the elicitation process of expert opinion (Loveridge 2004, 39). This tension opens a normative dimension addressing the qualification of the available information, which is especially relevant when communicating the results of a foresight exercise to decision-makers (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006, 149). 
The Potential of Applied Machine Learning for Foresight	Comment by Vignoli Michela: See previous comment. We included additional references in 1. and 2.1. to outline our framework of Foresight more clearly, thus addressing a comment by Reviewer 1.

Also, we included the limits of our approach from section 5 (discussion) to section 2 in response to the comment by Reviewer 1 (text parts in dark green):

[…] I think that the authors should have addressed their reservations and limitations made in that section at the beginning of their research.  
Machine Learning (ML) is not a new research discipline (McCarthy, et al. 1955), but is increasingly often introduced into new domains. This is done for various reasons, amongst them improved pattern recognition, which fueled the recent rise in ML applications and can make use of labeled or unlabeled data (LeCun, Bengio und Hinton 2015).  Combined with suitable computing resources, it creates the opportunity to process large amounts of data, and extract information from it, thus both expanding the amount of data available for additional analysis, as well as to counter biases; and generally for support in decision making. Especially the combination of human expert knowledge and algorithms that can solve lengthy, often tedious tasks and integrate vast amounts of data is of interest for various domains, i.e., in foresight (c.f. Geurts et al., 2021), where it can be integrated into each step of the foresight process. Within ML, there are a number of generalised methods that can be used for interdisciplinary work. With a focus on the work presented here, and the usage for text-based research, natural language processing (NLP) algorithms are a specialised family of algorithms that can be used for many tasks. Additionally, more generalised techniques such as clustering algorithms are used here.
Assessing future-related evidence in a large data set needs a classification model for forward-looking statements. however, required us to take a preliminary decision on what we classify as forward-looking statement. Through interdisciplinary exchange, we were able to agree upon We propose two sets of elements to focus the search field of the horizon scanning (see 3.1 Identification and Classification of Forward-Looking Statements). We developed the elements based on experiences from previous horizon scanning research projects, i.e., Foresight Fraunhofer I and II.[footnoteRef:4] from examples of our individual experiences when trying to annotate the training data and then discussing difficulties and common clarities among us. However, this is by far no solid definition, rather a snapshot of and supposedly open and on-going discourse. This important limitation related to the procedural and complex criteria for defining forward-looking statements impacted the accuracy of our ML model. [4:  Two internal (2018-2019 and 2019-2020) projects tasked to identify emerging topics with potentially high impact for applied research conducted at Fraunhofer.] 

In order to develop, train and improve a ML model that is able to identify meaningful forward-looking statements in a big data corpus of news articles, the question ‘What is a forward-looking statement?’ is crucial. 
[bookmark: _Ref75954374] What is evidence-based science communication and what does it have in common with foresight knowledge?	Comment by : In order to improve the clarity of our paper, we removed the parts and concepts referring to evidence-based science communication throughout the text.

Comments by Reviewer 2:
Despite this very promising starting position and many productive insights of the study, there are issues connected to the structure and argumentation of the article that have to be solved to increase its scientific rigour and clarity.

The main interest of the article seems to be the evaluation of ML-enabled techniques to contribute knowledge to two scientific fields of study - foresight and science communication. The related work section and argumentation within the article, however, is not guided towards the evaluation of a new scientific method (methodological argumentation). Put otherwise, the research questions, the evoked body of scientific knowledge, the results and further leading discussions do not sufficiently built on each other (yet).

[…] By focusing on just one of the two fields (foresight or science communication), the authors could put more weight in the comparison of the long-standing methods in one scientific field (e.g. expert interview analysis in foresight or media frame analysis in science communication) with an concrete and well-established ML-technique for text analysis by means of Natural Language Processing (e.g. topic modeling). Addressing two scientific fields at once (foresight and science communication), in contrast, blurs the methodological focus of the study. It seems unclear what is being compared to what.
Selection and quality of available information plays a major role not only as input to a foresight exercise, but also as evidence-base for science communication (Jensen and Gerber 2020). On the one hand, science communication can be defined as “the use of appropriate skills, media, activities, and dialogue” to produce “personal responses” to science, i.e., awareness, enjoyment, opinions, interest, or understanding (Burns, O'Connor, and Stocklmayer 2003). On the other hand, science communication is no longer understood as the linear transmission of simplified scientific knowledge, but the performative character of science communication has been recognised (Felt 2003, 17). In a meta-analysis of the role of communication in open science, Kulczycki (2016) summarises two main models, upon which current science communication definitions are based. While the first model focuses on dissemination and transfer of knowledge and how the information is shared, the second model emphasizes that communication is a social activity, which generates shared knowledge as part of the process of information exchange with the target audiences (Kulczycki 2016). Based on these considerations, we adhere to the science communication concept as social activity, which creates knowledge as part of the process of information exchange with experts and target audiences. This understanding is based on a constructivist concept of communication as a “co-creation [process] of the symbolic dimension of our reality” (Kulczycki 2016). Science communication is a sense-making process, that can build on foresight knowledge and - similar to foresight activities - is characterised by collective processes of knowledge generation, negotiation and communication, i.e. the use of evidence-based information for knowledge creation and thus sense-making.
 How to assess extract evidence from a large data corpus of news articles to support foresight practice?	Comment by : We included the limits of our approach from section 5 (discussion) in response to the comment by Reviewer 1:

[…] I think that the authors should have addressed their reservations and limitations made in that section at the beginning of their research.  

To streamline our research scope and aim better, as well as to achieve a better integrated interdisciplinary methodology, we removed the consideration of the evidence-based science communication framework by Jensen and Gerber and narrowed the focus to the foresight application field instead.

To strengthen the methodological focus, we also included a reference suggested by Reviewer 2.

Comment by Reviewer 2:
// Need to streamline the interdisciplinary research design and argumentation, specify the contribution more thoroughly 
The article is the result of an interdisciplinary collaboration between researchers in foresight, science communication and data science. The interdisciplinary take is potentially valuable and interesting to read, but the common perspective of the research team is not sufficiently integrated within the text. Several elements still appear to be 'stitched together' without contributing to the overall argumentation of the article. The research questions, results and discussion elements do not yet sufficiently build on each other (how the authors get from A to B to C ...). 
 
As a result, the concrete contribution of the article is not clear yet. The authors state in their contribution statement: 
"We explore how, through the combination of open-source data (news articles, Dimensions database), the expertise of persons quoted/being mentioned in mass media the context of Covid-19 can be evaluated. We focus on foresight knowledge (i.e. predictions for the future), as our team has considerable expertise in this field, and these discussions have been abundant throughout the pandemic." 
This does not indicate, however, the body of knowledge to which the study contributes. This is a typical problem in interdisciplinary research, but can and should be solved in the article. The challenge will be do so so, without "throwing out" either foresight or science communication.

By focusing on just one of the two fields (foresight or science communication), the authors could put more weight in the comparison of the long-standing methods in one scientific field (e.g. expert interview analysis in foresight or media frame analysis in science communication) with an concrete and well-established ML-technique for text analysis by means of Natural Language Processing (e.g. topic modeling). Addressing two scientific fields at once (foresight and science communication), in contrast, blurs the methodological focus of the study. It seems unclear what is being compared to what.
Both Foresight and ML heavily depend on sense-making activities that aim at transforming a complex body of data to information and knowledge, to make it manageable, workable, communicable and discussable. They demark processes, in which knowledge is alternately and continuously collected, structured, rearranged, enriched, and summarised. Especially the main characteristic of foresight knowledge – uncertainty – makes it necessary to conceive of assessment as an open and ongoing process aimed at making explicit and continuously reflecting on the implicit assumptions that frame relevant forward-looking statements. 
Mueller et al. (2016) noted that ML should be considered an iterative process occurring at multiple, nested levels rather than a linear process. They observed that the “dialogic iteration between human researcher and computational algorithm” is often not considered in ML applications. However, in our study, we found that human interaction and judgement played a central role, particularly in the context of the iterative classification process that led to the creation of our ground-truth data.	Comment by Vignoli Michela: Michael Muller, Shion Guha, Eric P.S. Baumer, David Mimno, and N. Sadat Shami. 2016. Machine Learning and Grounded Theory Method: Convergence, Divergence, and Combination. In Proceedings of the 19th International Conference on Supporting Group Work (GROUP '16). Association for Computing Machinery, New York, NY, USA, 3–8. DOI:https://doi.org/10.1145/2957276.2957280

It should be noted that in contrast to foresight and science communication contexts, which have to deal with complex problems and various actor perspectives on different levels with negotiation methods and processes,the goal of ML for problem solving and reduction of complexity lies primarily in the quantity – the recognition of patterns in a sheer unmanageable amount of data. Foresight processes are increasingly defined as participatory processes in order to take account of diverse stakeholder perspectives and collective intelligence and therefore involve stakeholders, citizens and scientific experts from different disciplines and domains in their sense-making processes. In contrast, ML models are often developed single-handedly by computer scientists with specialised training in data analysis and modelling. ML techniques are based on learning from their own inherent models – happening in the notorious “black box” of ML – and reflexive analysis with different perspectives and creation of joint knowledge from a variety of actors often does not happen. To a certain extent, then, the trap of expert-centrism and its lack of transparency with regard to the negotiation of expert opinions is as inherent to ML techniques as it is to expert-centred foresight processes.
Ultimately the classification process of the ML model cannot be explained for every single decision, unless additional work is carried out for this specific data set, potentially at the cost of model performance. The reasons for similarity scores are not made transparent by design, so it cannot be said why the ML algorithm classified some text snippets with a high similarity score and others not. Although we did not further explore this within our work, there are approaches and techniques aimed at explaining classification processes of ML to render the black box more transparent (Explainable AI/XAI, for example LIME, as presented by Ribeiro, Singh, and Guestrin (2016)). On the one hand, this may seem like a radical limitation of ML tools in terms of legitimacy, as the underlying sense-making process is not transparent by design and the pool of accessed expertise in our study rather narrow. On the other hand, we found that the process of collectively annotating data provides a fruitful starting point for interdisciplinary exchange and sharing experiences from sense-making activities. Additionally, by creating a labelled data set, we are able to control input data for the model and guide the learning process.
[bookmark: _Hlk94703415]But how can an open and dynamic assessment of knowledge flows supported by ML approaches be operationalised and implemented? In the following, we highlight relevant key points that guided us through the research process and build the basis for a first reflection of the potential contribution of ML tools to assess identify evidence for potentially relevant foresight and science communication knowledge. We derive the key issues from the leading research questions, and the interdisciplinary areas of our expertise (ML, foresight, and science communication research).
ML is a technique that has a common trait with horizon scanning methods in foresight and science communication activities:
), and from the consideration of the science communication knowledge cascade describing key challenges for evidence-based science communication (Jensen and Gerber 2020). In a first attempt we compared criteria related to the challenges of evidence-based science communication suggested by Jensen and Gerber (2020) to quality criteria for foresight knowledge deliberation as suggested by Von Schomberg, Guimaraes Pereira, and Funtowicz (2006) (see Table 1). The science communication knowledge cascade states four challenges associated with evidence (Jensen and Gerber 2020, 3), namely relevance, accessibility, transferability and quality assurance. In all four dimensions, a gap is identified between the sphere of science and research and the sphere of practice, which supposedly needs to be overcome. Two of these dimensions can also be found in assessment approaches of foresight knowledge: relevance and availability respectively accessibility.
Relevance refers to determining the relevance of evidence for the two selected processes of knowledge production and usage. For both processes the quality of scientific knowledge is a central aspect, but it raises different questions: whereas in science communication evidence is primarily demanded for science communication practice and further science communication research (why and for whom are results relevant?), foresight takes a forward-looking view and orients relevance towards the added value of foresight: the long-term nature and radical novelty of generated future knowledge.
Accessibility of relevant evidence for the evaluation of knowledge flows plays a central role in science communication and foresight. In science communication, the dimension of accessibility has a broader notion of access to research data and methods (open science). But also in foresight, accessibility to bodies of knowledge and knowledge carriers that can provide new evidence, especially related to issues of uncertainty, is regarded as critical.
Two further categories differ from those of evidence-based science communication, which can be explained by the different focus: science communication is rather located in the area of knowledge use, while foresight is seen as a central mechanism of knowledge production. The inherent knowledge divide into the realm of knowledge production and knowledge use is characterised by the different range of knowledge sources, actors and audiences involved in the processes. While knowledge production processes offer a manageable number of actors and a recognisable methodological setting in order to derive evidence, knowledge use is embedded in the wide-ranging field of our society with all the different value systems, platforms and spaces for developing understanding, sharing, learning and communicating. But perhaps it is this slightly different perspective that adds value to our investigation, as the more special case (foresight knowledge) can raise essential questions for the more universal and broader question of science-society relations (science communication knowledge) and vice versa. This major difference is also reflected in the different evidence dimensions: while science communication operates with the broader term transferability, foresight is concentrated on the fitness for purpose aspect of evidence; the comprehensive concept of quality assurance receives the connotation of legitimacy in foresight processes for policy support. 
Applied ML Approach: Scope and Leading Research Questions	Comment by : We revised this section to make the scope and leading research questions clearer.

Comment by Reviewer 2:
The main interest of the article seems to be the evaluation of ML-enabled techniques to contribute knowledge to two scientific fields of study - foresight and science communication. The related work section and argumentation within the article, however, is not guided towards the evaluation of a new scientific method (methodological argumentation). Put otherwise, the research questions, the evoked body of scientific knowledge, the results and further leading discussions do not sufficiently built on each other (yet).

This is where a strong connection between science communication, foresight and ML can be found: all three realms depend on relevant scientific evidence to underpin validity of the communicated content and source. Furthermore, all three realms heavily depend on sense-making processes in order to derive meaningful results.
Our study’s aim was to explore the potential of the chosen ML supported method for identifying and extracting information that could be used to extend the corpus of data sources that can be used in a foresight process – in particular for horizon scanningevidence-base for knowledge assessment in foresight and science communication research. We wanted to test if ML techniques can help addressing the pitfalls of foresight when collecting and synthesising expert and actor opinions for decision making, i.e. the “black box” of foresight (Loveridge 2004, 37). The apparent advantage of ML is that it can analyse a much higher number of data sources, thus potentially broadening the knowledge base for foresight processes. But we also investigated on the question of how ML tools may be used to automate parts of the process and contribute to make knowledge and expert selection processes more transparent.
Our study was led by two main assumptions. First, we wanted to verify if our observation that Covid-19 has led to an increased presence of individual researchers and actors making forward-looking statements or stating trends in mass media publications can be backed by the data extracted from online news media. To address this, we first searched our corpus data (see 2.5 Corpus Data) for forward-looking statements, and subsequently identified the names of actors mentioned in context of the extracted statements. Key questions in this context were: who made the statement or is connected to it, and is it within their area of expertise? Which contextual information about the actors can we retrieve to verify their (scientific) background?
Our second assumption was that by collecting additional information about the publication record of the identified actors, we can verify their (scientific) background. To get additional contextual information about the actors making the statementsverify the area of expertise of the researchers, we compared the topic of the statement with the area of the researcher’s scientific publications. Our assumption was that if the content of the most recent publications matches the content of the statement made, the person is considered an expert for that area. It is important to mention that our main focus was on scientific expertise, and not expertise in other areas, e.g., political expertise. We retrieved the information necessary for thisabout their publication record from the Dimensions[footnoteRef:5] database. [5:  https://www.dimensions.ai/] 

Our second hypothesis was that even for experts in ML, science communication and foresight, it is difficult to understand to which extent publicly communicated forward-looking statements are underpinned by scientific evidence. Also, the relevance of the communicated future-oriented knowledge is not imminent for an interdisciplinary expert audience. A leading question in this context was if the scientific knowledge, upon which the article is based on can be identified from the contextual information extracted from the Dimensions database. Our approach was to compare the text of the forward-looking statements identified by our model with the most recent abstracts of the scientific publication record by the mentioned experts to determine the scientific evidence-base of the statement. We explored if comparing the textual data from Dimensions and from the identified forward-looking statements by means of ML can provide insights for verifying the scientific ground truth or robustness of the statements. 
[bookmark: _Ref75505351] Corpus Data
In our empirical study, we searched for potential forward-looking statements from full texts of news articles previously extracted from a wide range of online news portals. The news articles database that we used was created to cover different world regions and reporting styles, as reported in Table 5. The data surveyed in this work is harvested through the use of the commercial NewsAPI, a news interface that can be used to easily query news databases and aggregate the results into a comprehensive data set.[footnoteRef:6] In total, we collected 447,486 articles published between 1 January 2019 and 31 December 2020. [6:  https://newsapi.org/] 

To retrieve additional information about the background of the actors mentioned in context of analyse if the forward-looking statements are in line with the area of expertise by the cited experts, we compared the content of the statement our results with the most recent publication record of the identified persons. We retrieved the data for this comparison through the Dimensions[footnoteRef:7] database, which stores information on more than 119 million publications. This includes author names, type of publication (i.e., journal article, conference proceedings, book chapter, pre-print), date of publication, and the abstract of each publication (full texts are usually not available due to copyrights). We used this information to identify actors with a publication record.	Comment by Wenzel, Isabel: ist bereits auf Seite 9 gelinkt - nochmal nich notwendig?! [7: ] 

 Language and Data Selection Bias	Comment by : We included the limits of our approach from section 5 (discussion) in response to the comment by Reviewer 1:

[…] I think that the authors should have addressed their reservations and limitations made in that section at the beginning of their research.  
We restricted our corpus data to English-language news articles due to their availability and the volume of articles. The consequence is that the data that we worked with excluded any insights from news articles in other languages, as well as parts of the scientific discourse. However, it can be assumed that in this scenario of a worldwide pandemic, a large part of events and research is discussed and picked up by English-language media and published in English. Additionally, we tried to compensate for this, as well as to account for regional bias, by selecting news outlets from multiple origins, both geographically and culturally:
· European/US: The Washington Post, CNN, BBC News, The Wall Street Journal, POLITICO, The Economist
· Asian: Hindustan Times, Channel News Asia
· Arabic: Al Jazeera English
· African: allAfrica.com
While our approach resulted in a large corpus to analyse, it did obviously not cover the whole media discourse on the Covid-19 pandemic. For example, sources from Middle- and South-America are missing, as well as sources from China. The Global North is represented through the most sources (although not the most articles), but it is likely that its view is also mirrored in other sources. 
Another issue concerns the selection bias of the chosen data sets. As gets clear from the first results, actors identified from the news media articles are mainly politicians. We strongly assume that the reason for this bias towards politicians results from the chosen dataset of news media. Sources for foresight knowledge typically include foresight reports, trend monitoring reports, recent scientific articles, technology assessment studies, risk reports and the like. Still, we find it interesting, that news media mainly show politicians as the originators of forward-looking statements. For future research we recommend testing big data sets stemming from different sources and maybe also elaborate further on adequate and suitable data sources and data sets for identifying foresight knowledge.
Our pragmatic approach of comparing the names extracted with the publication records from the Dimensions database also led to important limitations. First, although the algorithm can recognise name(s) in the text snippet previously identified as a forward-looking statement, it cannot differentiate between the person mentioned being the source or author of the statement, or the person just being mentioned in context of the statement. This means that without manually checking the statements extracted, it is not possible to be sure that the number of statements attributed to a specific expert is accurate.
A second issue of the Dimensions database for our use case was that in some cases historical persons were included as authors as well. We found out that this is the case when, e.g., a text written by the person is published in context of a modern edition. Examples that we encountered are Abraham Lincoln and Adolf Hitler.
A common issue related to the identification of individuals is disambiguation of shared names. If two or more individuals share the same name, the algorithm will identify them as being the same person. As we don't have additional information available in our data corpus that could be used for disambiguation (e.g., institutional affiliation), this can for example directly translate into wrongly assigning scientific background (or a different background) to one person. In our manual review of extracted statements attributed to the persons with more than two mentions, we compared the statements and the three most recent abstracts from their publication record. Based on that comparison we found that disambiguation is most likely an issue for the following person names from our manually reviewed sample: Sanjay Gupta, Michael Ryan/Mike Ryan, Stephen Hahn, Rand Paul. Therefore, we did not include them into the list filtering out the persons without expert background. For these cases, the paper abstracts were from completely unrelated fields compared to the statements.
Within the scope of our experimental study, we did not explicitly discuss gender aspects. An interesting question for future research would be to analyse how many male and how many female actors we can identify in the data. For that, the World Wide Gender Dictionary[footnoteRef:8] could be used. [8:  https://ideas.repec.org/c/wip/eccode/10.html] 

[bookmark: _Ref77756166]Methodological Approach
[bookmark: _Ref75954515][bookmark: _Ref76633410] Identification and Classification of Forward-Looking Statements
For the work presented here, we created a simple, yet robust classification and enrichment approach that makes use of previous works and freely available data sources. In the following, we detail and describe the major steps of the applied semi-supervised classification approach.
In a first step, we searched the news articles corpus (see 2.5 Corpus Data) for potential forward-looking statements. To create a first data set to work with, we started by defining a loose set of associated keywords that we considered suitable for searching forward-looking statements. Based on this set of keywords indicating future-oriented statements (i.e., 'post-Covid', 'scenario', 'prognosis', 'outlook', 'roadmap', 'impact', 'future', 'future generation', 'next generation') we automatically searched the data set to collect a set of text snippets, which might contain forward-looking statements through keyword matching (regular expressions). Next to the sentence identified as forward-looking statement by the algorithm, we included also one sentence before and one after the statement as it proved to be helpful for the manual classification.
In a second step, we reviewed and annotated a random sample of about 560 entries to create a training data set usable for ML classification. The goal was to confirm which of the text parts are forward-looking statements, and which ones do not contain forward-looking statements. To classify the sample statements, we started from the list of keywords previously used and defined additional attributes indicating forward-looking statements, which are detailed below. Our goal was not to create a generic definition of forward-looking statements, but to develop a preliminary working definition based on which we could classify the random sample statements. Therefore, we manually annotated the dataset and categorised the statements based on considerations of the foresight concept, such as novelty of the statement or its long-term reference (see 2.1 What is Foresight knowledge?), and the properties already identified from the random statements during our review of the sample. Further discussions within the project team, helped refining the working definition of forward-looking statements along the ML training process.
The working definition of forward-looking statements that we used includes 1) characteristic elements for forward-looking statements, and 2) elements that we did not consider indicating future-oriented knowledge. The following set of characteristics defining forward-looking statements was the basis for our classification of the sample data set:
· Assumptions, speculations, uncertain/unknown scenarios or predictions (e.g., Due to the evolving coronavirus situation, we are facing a period of uncertainty regarding the potential impact on both our supply chain and customer demand.)
· Long-term prognosis, scenarios, outlooks, forecasts (e.g., The economic impact will be devastating on both sides of the border.)
· Expectations (e.g., There is also a real danger that more people could potentially die from the economic impact of Covid-19 than from the virus itself.)
· Warnings (e.g., Analysts cautioned that a recent rebound in Covid-19 cases could impact activity and consumption.)
· Estimations, future recommendations (e.g., It would be enough to offset the impact of tax credits for low- and middle-income taxpayers.)
· Interviews or survey results including evidence for future impacts, visions, etc. (e.g. A similar poll found the national economy will grow at its slowest pace in the current quarter since the financial crisis.)
· Open questions (e.g., How the virus will impact our economy remains an open question.)
We agreed to exclude very short-term predictions such as death-rates and weather predictions from the beginning. Though they are forward-looking in their nature, the value added in terms of new information and expertise remains rather limited. However, we tried to include short- and mid-term statements (addressing a time horizon of one to five years), when they had a strong foresight character, in order to include as many example statements in the training data set for the ML algorithm. Also, short-term forward-looking statements could indicate relevant thematic areas in connection to Covid-19, that might become more relevant in the long-term[footnoteRef:9] (e.g., future of education, future of work, growing social inequality, impact on suicides, etc.).  [9:  This refers to the methodological notion of weak signals and emerging issues. A weak signal is an early indication of possible emerging issues and developments that are not yet confirmed or have not yet strengthened into a trend. If several weak signals accumulate, they can become an emerging issue.] 

The following attributes were used to exclude statements that did not meet our requirements for forward-looking statements:
1 Concrete plans, promises, conclusions for actions with no long-term perspective (e.g., 'According to the panel, the athletes will be permitted to compete provided they’ve not been subject to suspension.')
2 Very short-term predictions, outlooks, forecasts (e.g., death-rates, weather predictions)
3 Retrospective scenarios (e.g., which could have happened, but did not)
4 Interviews or survey results that include evidence for already incurred, observed impacts (view into the past, e.g. 'According to a Covid-19 impact survey, the coronavirus pandemic has robbed 70% of citizens of some form of income.')
5 Generalised prospects without concrete scenario or reference (e.g., 'Today’s leaders will form our future.')
In a third step, we used the resulting manually annotated data (i.e., confirmed forward-looking statements and other statements containing the same keywords) as ground-truth to train and test the ML algorithm. Out of 96,111 statements, which contained the earlier described forward-looking keywords, we identified 42,489 (2019: 27,195, 2020: 15,294) statements as being forward-looking statements according to our definition. In this classification we did not exclude statements without direct mention or citation of a person as we wanted to train the ML algorithm to recognise forward-looking statements without that particular restriction. Our sample data included forward-looking statements from various areas, e.g., politics, climate, health, economy.
[bookmark: _Ref75785338][bookmark: _Ref75954179][bookmark: _Ref75896030][bookmark: _Ref75959352] Applied Machine Learning Methodology
The manually created ground truth data set described above was used as input for a (relatively small) deep neural network that is applied to text classification. We provide the resulting ML model on GitHub, along with the rest of the code that we used.[footnoteRef:10]	Comment by : We made the Github repository public 

Comment Reviewer 2:

The link to the relevant Github repository, though, is not working at the moment. This should be updated.
 [10:  https://github.com/janrn/scicomm-evidence ] 

To improve the performance of our model, we encoded the input beforehand with so-called word embeddings, in our case BERT embeddings[footnoteRef:11]. What these BERT embeddings do is essentially increase the information depth available from a given text, to emulate how humans read and understand texts. Put briefly, the model gets additional knowledge about each word – for instance, which other words are similar to it; different semantic meanings based on the context; synonyms; etc. In 2018, these embeddings have been described as a major technological breakthrough for the field of natural language processing, see Devlin et al. (2019), allowing researchers to achieve previously unattainable performance on various challenges, including text classification, named entity recognition, text comprehension, machine translation and more. Making use of pre-trained models as in the work presented here has the advantage of being able to use innovative techniques while working with restricted computational resources. [11:  Specifically, we used https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-768_A-12/2 ] 

Throughout the training process, we reviewed the initial results, corrected them, and then included those into the training data. We repeated this step twice, and subsequently reached accuracy scores of 0.98 (0.8 f1-score) on training, 0.75 (0.65 f1) on test, and 0.74 (0.63 f1) on validation data. For the following steps, we only worked with text snippets classified as forward-looking, a total of 27,195 for 2019 and 25,633 for 2020, of which 15,294 come from articles related to the Covid-19 pandemic.
Next, we used named entity recognition (NER) from flairNLP, as described by (Akbik et al. 2019),[footnoteRef:12] to identify persons and organisations from these text snippets. The purpose was to learn who is cited or simply mentioned within a given statement. These NER models are pre-trained in such a way that they achieve high accuracy on extracting the names of persons from texts, without necessarily knowing a specific name beforehand. To prepare further analysis, we only kept the names of persons that contained at least two elements (first and last name). [12:  https://github.com/flairNLP/flair ] 

We then queried the Dimensions database with each name, with the goal of identifying those who had at least one publication (i.e. paper, book, chapter) listed in this database (Hook, Porter, and Herzog 2018). For this, we searched records of the type 'publications', which in the list of authors (field 'authors') contain the name of a person we extracted from our source data, thus linking that person to a list of publications.[footnoteRef:13] [13:  See Dimensions API documentation at https://docs.dimensions.ai/dsl/datasource-publications.html] 

The reasoning behind this was two-fold: on the one hand, those that could not be found are almost certainly not scientists (provided the NER did not mess up their name). On the second hand, having the abstracts of their most recent publications provides a hint towards their area of expertise. For the purpose of this paper, we consider someone an expert in any given field, if their most recent published works discuss a topic similar to what is discussed in a given news article.[footnoteRef:14]  [14: ] 

Finally, we decided to take the semi-automated evaluation further and explore ways to differentiate between researchers who talk about (or are talked about) within their area of expertise, and those that do not. We take the three most recent, available abstracts as the data used to determine a given researcher's expertise and compare it to the given text snippet. For this, we made use of the so-called cosine similarity, where two text samples are first converted into sentence vectors, allowing us to then calculate the angle between the two vectors. The results of this calculation are [-1, 1], with 1 meaning that the two texts are exactly similar, and -1 the result of two texts that are the polar opposite of each other. We again used BERT embeddings to compensate for the rather short texts that are used for comparison. Our results show that this is a feasible way to determine if a text snippet matches a researchers' area of expertise. However, there is no exact threshold that can be determined. In Fehler! Verweisquelle konnte nicht gefunden werden., we show exemplary results of this approach.
[bookmark: _Ref75504970]Results: ML Classification of Forward-Looking Statements	Comment by : We excluded the results related to the cosine similarity analysis between the abstracts of the publications and the statements by the identified actors in our revision. Instead, we elaborate how the information extracted from the Dimensions database contribute to enriching the information gained from the media analysis by different actor types.

Comment by Reviewer 1:
[…]foresight knowledge in itself is a difficult concept. The quality of it depend on how this knowledge had been generated which is not to easy to trace back, especially in the literature the authors have used for their analysis. Stating that the quality of a certain 'foresight statement' depends on the expert is also a tricky one. The best futures researchers (both academic and non-academic) are not so much experts in the sense of being specialist but being generalists. The scientific reputation is therefore a difficult indicator. 

The results reported below need to be considered first results of an experimental study, which would certainly benefit from further research and discussion. In section 5. Discussion we include our thoughts about the extent to which the combined ML approach is able to support 1) the identification of forward-looking statements, and 2) provide additional contextual information about the scientific publication record of the actors, which in return can provide us insights about their contextual knowledge. by the experts can support determining the scientific evidence-base of the extracted statements.
As briefly described in section 3.2 Applied Machine Learning Methodology, the neural network to classify forward-looking statements worked reasonably well, i.e., we were able to identify such statements from a large text corpus, although of course limitations apply, which are discussed in section 3.1 Identification and Classification of Forward-Looking Statements. Since this process is not the focus of this work but the foundation for further qualitative and quantitative analysis, we now describe the insights we gained. 
First, to get a quantitative understanding of our data, we present in Table 1 an overview of the number of articles and short statements. The table lists how many of them are classified as forward-looking and how many are from articles mentioning the Covid-19 pandemic. Comparing 2019 and 2020 year-on-year, we observed a small decline in both absolute numbers of articles (6.01%) and in the number of forward-looking statements (5.74%) extracted from them. However, the majority of those statements in 2020 appears in articles mentioning the Covid-19 pandemic (59.67%). The overall share of articles mentioning the pandemic is also high, at 51.45%.
In the next step, where we further examined the forward-looking statements and extracted names of persons who are cited or otherwise mentioned, we looked up the names in the Dimensions database to identify those who have at least one publication listed in a scientific database. We did not differentiate between first-or co-authorship or type of publication. The results of this are presented in Table 2. For technical reasons, we count only those who appear with two name parts, presumably first and last name. We found that the overall number of unique person names increased slightly from 3,405 to 3,725 (a plus of 9.4%), but the number of those who can be linked to an indexed publication raised (by 45.05%) to a total share of 77.1% in 2020 compared to 58.15% in 2019. Within the subset of pandemic-related articles, this rises to a share of 62.29%. Almost half of the names with a scientific publication entry in 2020 are from news articles linked to the pandemic.
Overall, the quantitative results suggest that we can observe an increase in persons that pass at least a very basic verification of their scientific publication record check for scientific expertise in the context of the Covid-19 pandemic, coupled with or leading to an increase across all areas of articles. However, the manual check of the actors identified somewhat relativises this result, as explained below.
To get a qualitative understanding of the efficiency of the ML algorithm for identifying the background of the actors mentioned in the statements, we took two approaches manually reviewed the most frequently mentioned actors in the statements extracted by the algorithm. We compared the statements and the abstracts/titles of the most recent three publications of the identified actors. Table 3 shows the twenty most mentioned names in the extracted statementsdisregarding their expertise, which include – next to renowned epidemiologists and virologists – a large number of politicians. This result is not surprising, as although we expected to get more results related to scientific publication records from the Dimensions database. Instead, we had to recognize that  Dimensions is not the ideal data base for determining the scientific background of the experts as it is not limited to scientific literature, and a few politicians actually published scientific work, albeit in some cases many years ago. Therefore, the quantitative output of this research step needs to be complemented by manual review and additional research in order to achieve an understanding of the background of the actors mentioned.
Thus, in an ulterior manual step we did an online research to manually filter out the individuals without scientific background. Table 4 shows the resulting list of most cited actors with scientific background in context of Covid‑19 from our analysed corpus data. Not surprisingly, the most cited actors in the news items identified by the ML algorithm correspond to famous Covid‑19 advisors from major institutions in the English-speaking world, e.g., Anthony Fauci (NIH), Robert Redfield (CDC), and Tedros Adhanom Ghebreyesus (WHO).
By comparing the frequency of the actors mentioned in the extracted statements, we could clearly see a trend of which actors were cited the most. Also, we compared the frequency of actors cited with the previous year (see Table 2): in 2020, 618 names from 2019 can be identified again. 342 of those appear in texts related to the Covid-19 pandemic.
With this initial, manual test, we decided to search for a scalable approach that could be applied to our larger corpus, without the cumbersome task of checking each individual name by hand. For this, we again leveraged the Dimensions database and used the possibility to retrieve abstracts for each publication, to compare those to the statements connected to the person in question. We did this by way of computing the cosine similarity of the statement and the three most recent abstracts (if available), as described in 3.2  Applied Machine Learning Methodology. These scores can range from -1 (texts are the polar opposite of each other) to 1 (texts are virtually the same). Due to time constraints, it was not feasible to take the results of this and conduct a thorough evaluation. However, we believe that this approach is feasible and can provide insights at scale, and to illustrate this we provide some examples in Table 6. 
Here, we want to highlight a few examples. The first being Anthony Fauci, a renowned expert on infectious diseases and also a prominent media figure in the US. In the first example, he talks about the effect that a vaccine with high efficacy would have on the pandemic, resulting in a high score of 0.78, which is expected as he is talking about a subject clearly within his area of expertise. In the second example, however, the focus is more on testing and also school closures are mentioned, something that, one could argue, is not entirely within his area of expertise. Consequently, the score is lower with 0.62. A second example is Beth Tarasawa, a researcher on school and education policies; she actually receives the highest score in our dataset, 0.89 for a statement on the effects of school closures on children. And third, Angela Merkel (who has a doctorate in quantum chemistry), and a statement with her being mentioned in the context of Germany's uncertain political future, reaches the low score of 0.39. This does not mean that she is not an expert on German politics, but rather that this is not stemming from her scientific background, which is what we are evaluating with our approach.
With this additional step, we can confidently state that this methodological approach is able to produce additional insights on the scientific background of a person, and how this matches a given text context. However, the interpretation of the resulting scores in relation to the expertise of the identified persons needs to be discussed. Our approach to compare the statements with the most recent publications implies a substantial simplification of a more complex reality, which is discussed in 5.4 Legitimacy and Quality Assurance: Identification of Experts and Attribution of Statements.
[bookmark: _Ref75505295][bookmark: _Hlk94705215]Discussion	Comment by : We considerably revised the discussion section to make it more concise and shifted the discussion of the limits of the chosen method to sections 2.

Comment by Reviewer 1: As I said the research is very thorough. But I consider the discussion-part as rather extensive. I mean, I think that the authors should have addressed their reservations and limitations made in that section at the beginning of their research.  
 
In this chapter we discuss opportunities, challenges, and limitations of our approach. To establish the relevance of our methodology in context of evidence-based science communication and foresight, we discuss our results based on the four dimensions of the science communication knowledge cascade (Jensen and Gerber 2020) and along four key challenges in deliberating foresight knowledge (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006). We summarise our thoughts and conclusions with regards to the potential that our approach can have for sense-making and evaluation processes in foresight and science communication.
[bookmark: _Hlk94703539] Relevance of ML for Horizon Scanning: Insights and Limitations from News Media Data
Relevance is one of the main criteria for assessing evidence for foresight knowledge and science communication. The basic idea of determining the relevance of evidence for the assessment of knowledge is essential for both fields and has long been practised in the quality assessment of scientific knowledge. While evidence for scientific knowledge is derived from the bibliometric analysis of scientific data and from the traceability and repeatability of scientific experiments, the relevant evidence for foresight knowledge and evidence-based science communication is found particularly in the highly dynamic production contexts of diverse knowledge flows. In terms of evidence-based science communication, central demands are to provide evidence that is useful for science communication, in particular related to challenges and needs from science communication practice. In terms of foresight knowledge, evidence must provide radical, new knowledge and expertise as input for robust foresight processes. 
Our results suggest that the extracted data can be useful for answering the following questions: Which forward-looking statements can be identified in contemporary news articles? Who is making the statement? Which are the latest publications of the person making the statement? Is the statement backed by expertise?
In our view, our ML-aided approach is able to provide relevant insights in the context of forward-looking statements in public media. and thus contribute to the first dimension of the science communication knowledge cascade (Jensen and Gerber 2020). Our results confirmed that the ML approach is a helpful support for semi-automatically extracting forward-looking statements from a large dataset and for identifying experts actors associated with those.
The four examples in  of statements extracted by the algorithm show that the identification of forward-looking statements with Covid-19 connection worked reasonably well for many cases. However, the identification long-term orientation and novelty of the identified forward-looking statements remains unsatisfactory in large parts in some cases. An example is the statement attributed to Beth Tarasawa, which was positively recognised as forward-looking statement by the algorithm, however, only with a rather low score of 0.68 ([They] predict that extended school closures could potentially cause serious academic setbacks for students struggling to adapt to remote instruction.) According to our definition, the forward-looking statement should have received a higher score as it associates an emerging long-term issue with Covid-19, which could be relevant for a specific foresight activity. In comparison, a statement by Annegret Kramp-Karrenbauer was identified as forward-looking statement by the algorithm with a very high score of 0.94. However, the statement is not a forward-looking statement according to our definition (Annegret Kramp-Karrenbauer unexpectedly announced that she will not run for chancellor in the 2021 general election.). Although this inaccuracy of results is predictable due to the fuzzy concept of forward-looking statements that we used, the resulting inaccuracy has implications for the fitness for purpose of the extracted statements in a foresight context. As noted in 3.1, our working definition for a forward-looking statement included short- and medium-term elements in order to have as many example statements in the ground truth data. This means that the statements identified by the ML algorithm do not necessarily include only the long-term perspective, which is important in the context of adequate and appropriate foresight .
Also, the performed similarity check of the expert statements and their academiccomparison with the publication record of the identified actors provided meaningful contextual information that can provide a semi-automated support for analyzing theadd relevant information about the (scientific) background by the expertsof the actors. 
[bookmark: _Hlk94705586]In summary, politicians were identified in most of the extracted statements. Also, we discovered that many statements were made by scientists and practitioners (see Table 3). As described in the previous results section, the cosine similarity score is a good indicator for identifying the overlap of the statement with area of expertise of the identified person (see Table 6). However, it must be clear that the ML approach is limited in terms of automatically identifying tangible evidence. It rather points towards potentially relevant evidence in a mass of collected data, which again requires supervised examination in order to make sense of the results. our simplistic approach to base the identification and classification of actors solely on records of recent publications is limited. A problem is that the publication record of a person does not necessarily reflect the various roles that he or she has. An example is Tedros Adhanom Ghebreyesus, who resulted the third most mentioned actor with a scientific background in context of the extracted COVID-19 statements (see Table 4). His scientific publication record in Dimensions confirms his expertise as epidemiologist. However, he is also Director general of the World Health Organization, which on the one hand clearly has an influence on his visibility in the media. On the other hand, the data that we analysed do not give us the possibility to assess whether his statements were made based on his scientific expertise or in his function as WHO director. Another related example is Rand Paul, who is physician but also politician. This additional level of complexity needs to be critically taken into account for the manual selection of data as well as the interpretation of the results from the ML analysis.
Within a foresight process, politicians usually are the target audience for whom foresight knowledge is generated (e.g., recommendations based on future-robust knowledge). To integrate their forward-looking expertise is even more difficult, as it might be influenced by political agendas and could therefore undermine the scientific knowledge base or might even add an unwanted normative framing to the knowledge generation process.
For foresight knowledge, relevance of evidence is determined beyond scientific excellence in terms of a long-term time horizon and radical novelty (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006). In relation to these claims, the insights on evidence on forward-looking knowledge that we gained with our ML analysis were rather modest. Most of the identified forward-looking statements had a rather short-term horizon and did not cover radically new topics or aspects. This is of course due to the limited objective and generic setting of the implemented foresight approach, aimed at identifying forward-looking statements related to Covid-19 in a large media data set. It became apparent during the research process that, in order to identify useful forward-looking statements with ML tools as input to a foresight process, an additional participatory, interdisciplinary and transparent sense-making activity would greatly benefit future projects. We discuss this consideration in section 5.3 Fitness for Purpose: Classification of Forward-Looking Statements. Nevertheless, we derived relevant insights on potential evidence for foresight experts from the extracted data: the larger pool of sources led to the discovery of interesting new experts that we would not have discovered without our ML approach. Just to name two examples: Beth Tarasawa, a researcher on school and education policies, or Michiko Ueda, a political scientist. We thereby assume that we would not have checked, e.g., Japanese universities for experts on the interrelations of Covid-19 and suicides in the elicitation process of experts for a foresight activity on Covid-19.
[bookmark: _Ref76635890] Accessibility of Evidence: Language and Data Selection Bias
In context of foresight practice, having equal access to information and knowledge is key as it is directly related to uncertainty, decision, and policy making. Moreover, foresight requires a certain legibility of information to make it accessible to relevant groups (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006). Although providing research results and underlying data openly is important for making relevant evidence accessible to research and practice communities (Jensen und Gerber 2020), we do think that also processes related to communication and assessment of scientific knowledge should be made more open and transparent. Therefore, we shortly describe challenges we faced regarding accessibility of evidence and the limitations that arise from these issues.
We restricted our corpus data to English language news articles due to their availability and the volume of articles. The consequence is that the data that we worked with excluded any insights from news articles in other languages. However, we tried to compensate for this, as well as to account for regional bias, by selecting news outlets from multiple origins, both geographically and culturally:
· European/US: The Washington Post, CNN, BBC News, The Wall Street Journal, POLITICO, The Economist
· Asian: Hindustan Times, Channel News Asia
· Arabic: Al Jazeera English
· African: allAfrica.com
While our approach resulted in a large corpus to analyze, it did obviously not cover the whole media discourse on the Covid-19 pandemic. For example, sources from Middle- and South-America are missing, as well as sources from China. The Global North is represented through the most sources (although not the most articles), but it is likely that its view is also mirrored in other sources. Additionally, we exclusively used data in English language, which is true for both the news articles and the Dimensions database. We are aware that this excludes a significant part of the international public, as well as a part of the scientific discourse. However, it can be assumed that in this scenario of a worldwide pandemic, the majority of events and research is discussed and picked up by English-language media, and published in English language. 
Another issue concerns the selection bias of the chosen data set. As gets clear from the first results, experts identified from the news media articles are mainly politicians. Within a foresight process, politicians usually are the target audience for which foresight knowledge is generated (e.g. recommendations based on future-robust knowledge). To integrate their forward-looking expertise is even more difficult, as it might be influenced by political agendas and could therefore undermine the scientific knowledge base or might even add an unwanted normative framing to the knowledge generation process. This raises the question of legitimacy of evidence, which is discussed in section 5.4 Legitimacy and Quality Assurance: Identification of Experts and Attribution of Statements.
Within our approach we strongly assume, that the reason behind this biased result towards politicians results from the chosen dataset of news media. Sources for foresight knowledge typically include foresight reports, trend monitoring reports, recent scientific articles, technology assessment studies, risk reports and the like. Still we find it interesting, that news media mainly show politicians as the originators of forward-looking statements. For future research we recommend testing big data sets stemming from different sources and maybe also elaborate further on adequate and suitable data sources and data sets for identifying foresight knowledge.
[bookmark: _Ref76409427]Added Value for Sense-Making Processes: Classification of Forward-Looking Statements
It must be clear that the ML approach is limited in terms of automatically identifying tangible evidence. It rather supports the identification of points towards signals of potentially relevant evidence in massive amounts of data, which again requires supervised examination in order to make sense of the results.
We want to emphasise that an in-depth discussion and assessment of the quality of the collected statements was outside the scope of this experimental study. We focused our analysis on testing the applicability of the ML approach for the extraction of relevant information sources from a large data set of media content that ultimately can contribute to strategic foresight processes. Although we see potential for our approach to provide data that can contribute to assessing the quality of the extracted statements, this step requires further research and thorough methodological discussions. As already highlighted, the data identified and extracted by means of the tested ML algorithm allowed us mainly to recognise preliminary insights and trends. Although the insights from the extracted contextual information of news texts can be used to determine the (scientific) background of the actors to a certain extent, our experience showed that the extracted data needs thorough qualitative review in order to be used as evidence-base for further interpretations.
Fitness for purpose is characterized by aspects such as accuracy, completeness and adequacy of knowledge (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006). Hereby the main issue is to determine what fits the purpose best. In foresight this process of determination is supposed to be a shared decision (based on a broader set of requirements). We encountered two major challenges, when trying to reach a shared decision on what kind of forward-looking statements are fit for purpose: on the one hand, we realized that assessing reliable future knowledge is an open and on-going process, which needs to be considered when trying to pinpoint a definition for the classification activity. Creating a classification model for forward-looking statements, however, required us to take a preliminary decision on what we classify as forward-looking statement. Through interdisciplinary exchange, we were able to agree upon two sets of elements that should limit the search process (see 3.1 Identification and Classification of Forward-Looking Statements and Experts). We derived those elements from examples of our individual experiences when trying to annotate the training data and then discussing difficulties and common clarities among us. However, this is by far no solid definition, rather a snapshot of and supposedly open and on-going discourse. This important limitation related to the procedural and complex criteria for defining forward-looking statements impacted the accuracy of our ML model.
One of our learnings from the interdisciplinary approach combining ML, foresight, and media analysis of science communication methodologies is that a close combination of qualitative and quantitative methods as well as interdisciplinary exchange and interaction are key in all stages of an ML-supported research process. Starting from the decision about which data sets to be used for the analysis, over the discussion and review of key words and key concepts guiding the ML model training as well as data set classifications – all stages profit from the interdisciplinary discourse and reflection. The interdisciplinary setting forced us to think out of the box and to re-assess and clarify key concepts needed for the ML classification. Also, the discussion and interpretation of results considerably profits from the input from various disciplines and models of thought.
What we realised during this process is that experts are needed for all phases of the ML-aided process. However, it made also clear that building a reliable ML model, which can handle dynamic and practice-related concepts, is a time-consuming endeavour that needs considerable further work compared to what we were able to do within the scope of this study. Setting up such a ML model is more challenging compared to targeted research conducted by a person. In fact, initial costs and efforts needed to create such a system are high and need to be taken into consideration. (Mauksch, von der Gracht, and Gordon 2020, 10).
There is a notable drawback to ML techniques based on neural networks: their inherent black box. This means that ultimately the classification process of the ML model remains unexplainable, unless additional work is carried out for this specific data set, potentially at the cost of model performance. The reasons for similarity scores are not made transparent by design, so it cannot be said why the ML algorithm classified some text snippets with a high similarity score and others not. Our results show that a surprisingly large number of extracted experts have a high similarity score, which seems to be unusual at first sight (see 3.2 Applied Machine Learning Methodology). Although we did not further explore this within our work, there are approaches and techniques aimed at explaining classification processes of ML to render the black box more transparent (Explainable AI/XAI, for example LIME, as presented by Ribeiro, Singh, and Guestrin (2016)). On the one hand, this may seem like a radical limitation of ML tools in terms of legitimacy, as the underlying sense-making process is not transparent by design and the pool of accessed expertise in our study rather narrow. On the other hand, we found that the process of collectively annotating data provides a fruitful starting point for interdisciplinary exchange and sharing experiences from sense-making activities. One of our learnings from the interdisciplinary approach combining ML, foresight, and science communication methods is that exchange and interaction are key in all stages of a ML-supported research process. Starting from the decision about which datasets to be used for the analysis, over the discussion and review of key words and key concepts guiding the ML model training as well as dataset classifications – all stages profit from the interdisciplinary discourse and reflection. The interdisciplinary setting forced us to think out of the box and to re-assess and clarify key concepts needed for the ML classification. Also, the discussion and interpretation of results considerably profits from the input from various disciplines and models of thought.
[bookmark: _Ref76633588] Legitimacy and Quality Assurance: Identification of Experts and Attribution of Statements
To gain insights for quality-assured knowledge assessment, selection of and quality of available information are key. Both science communication and foresight research depend on quality-assured knowledge, which is accurate, complete, and adequate for the purpose (Jensen and Gerber (2020), Von Schomberg, Guimaraes Pereira, and Funtowicz (2006)). Especially in the context of foresight knowledge production, the question of legitimacy as a question of choice of the knowledge that should be considered becomes central. Here the main issue is the problem of expertise that serves a particular political agenda rather than aiming at sound and robust knowledge (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006). Research to date shows that there are a number of approaches to selecting foresight experts, ranging from informal approaches that explicitly refrain from formalizing expertise to co-nomination procedures, assessment of political influence or personal commitment, and evaluation of externally available criteria (e.g., years of professional experience, position, publications, etc.), or self-assessments and knowledge tests (see Mauksch, von der Gracht, and Gordon (2020)). Driven by digitalization and the availability of huge amounts of data, automated, AI-based mechanisms for identifying experts are gaining importance (Mauksch, von der Gracht, and Gordon 2020, 10).
The main practical problems related to the question "Who is an expert?" are: How do you find people who are considered experts and how do you make this selection process transparent? (Loveridge 2004, 46). This is especially the case for foresight processes, that are implemented with less formal methods, such as panel discussions and group work, which often do not make the elicitation process of experts transparent (Loveridge 2004, 55). This has so far also led to the criticism that these foresight processes are conducted by panels formed by unknown processes, possibly shaped by self-selection among a small group of people who know each other well, with little attention to transparency aspects and a systematic approach (Loveridge 2004, 55). “Obviously, recruiting experts is only one task of the multi-step procedures typically involved in foresight exercises, and the procedures themselves vary considerably” (Mauksch, von der Gracht, and Gordon 2020, 1).
To answer the question “Who is an expert?” we took a pragmatic approach that was motivated by the data that we were working with: names extracted from forward-looking statements, and publication records extracted from the Dimensions database. However, our chosen method to compare the names found in the extracted statements with the records in Dimensions led to important limitations. First, although the algorithm can recognize name(s) in the text snippet previously identified as a forward-looking statement, it cannot differentiate between the person mentioned being the source or author of the statement, or the person just being mentioned in context of the statement. This means that without manually checking the statements extracted, it is not possible to be sure that the number of statements attributed to a specific expert is accurate. Using the Dimensions dataset to establish the expertise of the identified persons in the statements comes with a few caveats. As already highlighted, it turned out that the authors included in that database do not only include individuals with a scientific publication record, but also those who published at publishers that issue scientific publications. Thus, while it still provides useful insight at scale, this is not necessarily true when looking at specific persons in detail.
A second issue of the Dimensions database for our use case was that in some cases historical persons were included as authors as well. We found out that this is the case when, e.g., a text written by the person is published in context of a modern edition. Examples that we encountered are Abraham Lincoln or Adolf Hitler.
A common issue related to the identification of individuals is disambiguation of shared names. If two or more individuals share the same name, the algorithm will identify them as being the same person. As we don't have additional information available that could be used in disambiguating researchers (like institutional affiliation), this can for example directly translate into wrongly claiming missing expertise for one person. In our manual review of extracted statements attributed to the persons with more than two mentions, we compared the statements and the three most recent abstracts from their publication record. Based on that comparison we found that disambiguation is an issue for the following expert names: Sanjay Gupta, Michael Ryan/Mike Ryan, Stephen Hahn, Paul Rand (therefore we did not include them into the list filtering out the persons without expert background).
Within the scope of our experimental study, we did not explicitly discuss gender aspects. An interesting question for future research would be to analyze how many male and how many female researchers we can identify in the data. For that, the World Wide Gender Dictionary[footnoteRef:15] could be used. [15: ] 

Finally, limitations of the “expert” concept that we applied for this study have to be discussed as well. An inherent problem of our approach to base the classification of experts on records of recent scientific publications is that it limits the notion of expertise to scientific expertise. This model does not take into account that a person can have multiple roles, and that those are not necessarily reflected in their publication record. An example is Tedros Adhanom Ghebreyesus, who resulted the third most mentioned expert with scientific background in context of the extracted COVID-19 statements (see Table 5). His scientific publication record in Dimensions confirms his expertise as epidemiologist. However, he is also Director general of the World Health Organization, which on the one hand clearly has an influence on his visibility in the media. On the other hand, the data that we analyzed do not give us the possibility to assess whether his statements were made based on his scientific expertise or in his function as WHO director. Another related example is Paul rand, who is physician but also politician. This additional level of complexity needs to be critically taken into account for the manual selection of data as well as the interpretation of the results from the ML analysis.
Apart from these challenges related to our ML approach, the process of attracting experts is a delicate matter. We do not see ML as a suitable mechanism to provide a basis for a transparent and systemic selection of experts for a foresight process. Neither the underlying database nor the results of the comparative activities on expertise are sufficiently representative and meaningful for this. Where we do see potential of ML tools for expert elicitation is the value added through the accessibility of a much larger pool of sources, which can lead to the identification of experts, that would have not been identified otherwise (see 5.2 Accessibility of Evidence: Language and Data Selection Bias), and the potential of opening up sense-making processes in ML, foresight and science communication to a wider range of experts and to interdisciplinary expertise (see 5.3 Fitness for Purpose and Transferability: Classification of Forward-Looking Statements).
[bookmark: _Ref76638233] Challenges and Opportunities for Assessing Foresight Knowledge with ML Tools
To facilitate sense-making processes, which aim at making the communicated information accessible and understandable, it is necessary to create mechanisms that create a connection between scientific goals, practice, and societal needs. Making scientific knowledge available through open publication formats is not enough for making it truly accessible (Moskovitch 2012). We believe that an early involvement of stakeholders and the public supports making scientific knowledge not only more useful for research, but also for practice and society. In this context, we think that a co-creation approach is key as it helps reflecting on implicit normative assumptions. Also, organizing research as participative processes from early in the research lifecycle facilitates a transparent and inclusive scientific practice. In context of ML-supported sense-making processes, we think that fostering a transdisciplinary culture opens opportunities for making them more accessible and useful for both research and practice.
We want to stress that discussing and assessing the quality of the collected statements in depth was outside of the scope of this experimental study. We focused our analysis on testing the applicability of the ML approach for the extraction of relevant information that ultimately can contribute to knowledge assessment processes. Although we see potential for our approach to provide data that can contribute to assessing the quality of the extracted statements, this step requires further research and thorough methodological discussions. As already highlighted, the data identified and extracted by means of the tested ML algorithm allowed us mainly to recognize preliminary insights and trends. Although the insights from the extracted contextual information of news texts can be used to determine the scientific knowledge base of the experts to a certain extent, our experience showed that the extracted data needs thorough qualitative review in order to be used as evidence-base for further interpretations.
For foresight knowledge, relevance of evidence is determined beyond scientific excellence in terms of a long-term time horizon and radical novelty (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006). In relation to these claims, the insights on evidence on forward-looking knowledge that we gained with our ML analysis were rather modest. Most of the identified forward-looking statements had a rather short-term horizon and did not cover radically new topics or aspects. This is of course due to the limited objective and generic setting of the implemented foresight approach, aimed at identifying forward-looking statements related to Covid-19 in a large media data set. It became apparent during the research process that, in order to identify useful forward-looking statements with ML tools as input to a foresight process, an additional participatory, interdisciplinary and transparent sense-making activity would greatly benefit future projects. We discuss this consideration in section 5.3  Fitness for Purpose: Classification of Forward-Looking Statements.
Nevertheless, we derived relevant insights on potential actors to be involved in foresight processes from the extracted data: the larger pool of sources led to the discovery of interesting new experts that we would not have discovered without our ML approach. Just to name two examples: Beth Tarasawa, a researcher on school and education policies, or Michiko Ueda, a political scientist. We thereby assume that we would not have checked, e.g., Japanese universities for experts on the interrelations of Covid-19 and suicides in the elicitation process of experts for a foresight activity on Covid-19.
We do not see ML as a suitable mechanism to provide a basis for a transparent and systemic selection of experts for a foresight process. Neither the underlying database nor the results of the comparative activities on expertise are sufficiently representative and meaningful for this. Where we do see potential of ML tools for expert elicitation is the value added through the accessibility of a much larger pool of sources, which can lead to the identification of experts, that would have not been identified otherwise, and the potential of opening up sense-making processes in ML, foresight and science communication to a wider range of experts and to interdisciplinary expertise.
Knowledge assessment is an open and ongoing process aimed at making explicit and continuously reflecting on the implicit normative assumptions that frame relevant forward-looking statements. On the one hand, we are aware that quality checking of scientific information is a long-standing practice with established rules (Von Schomberg, Guimaraes Pereira, and Funtowicz 2006). We did not attempt to evaluate the quality of the ML approach against conventional approaches such as bibliometric methodologies in context of this study. On the other hand, both science communication and foresight research rely on collective sense-making processes to provide and make scientific knowledge accessible. Communication and interaction with wider audiences should happen in ways that facilitate research uptake in decision-making processes and practices (Wilson et al. 2010). In our view, the understanding of science communication as co-creation process is a crucial aspect when we look at the level of understanding relevance and evidence-base of the communicated content with the help of ML techniques (Kulczycki 2016). 
A particular challenge in context of foresight knowledge assessment relates to the fact that specific forward-looking knowledge is always measured with the goal of the foresight analysis. The generic approach that we followed thus does not provide an adequate evaluation basis for foresight knowledge. However, we see the added value of ML techniques as it provides a first approximation to a huge data set of public news articles with an attempt to identify relevant evidence for foresight expertise. This opens the possibility to conduct a relatively quick and dirty cross-check of identified evidence for foresight expertise and evidence for existing academic expertise through automated text and sentiment analysis. To conclude an intense discussion process, we want to highlight that ML techniques do have potential as a heuristic tool, supporting knowledge assessment and sense-making processes with big data. It is important to note that results from ML models are not solid evidence, but rather a tool that can support the development of further research questions and the reflection of research processes in ML, science communication and foresight. The momentum of ML models, which requires a continuous development/training of the analysis algorithms in order to deliver meaningful and helpful results, offers in its procedurality starting points for forward-looking and evidence-based science communication.
[bookmark: _Ref76562489] Outlook and Future Research
Enhancing transferability of accessible evidence is key to foster collaborative research between researchers and practitioners. We think that a ML approach with a strong interdisciplinary focus has the potential to enhance transferability of evidence between various disciplines and practice. The procedural setting of a ML approach and the requirement of an ongoing refinement and further training of ML models show parallels with sense-making processes. The data that is made accessible during a ML annotation and classification process builds a common ground for reflecting on implicit knowledge and expertise. These seem to be suitable features to build “enquiry machines (EMs)[…], interactive machines to explore sociocultural topics” (Jungnickel 2020, 4, 36).
An interesting question for future research is how the ground truth data can be improved in order to provide indications that can be used for assessing relevance of foresight knowledge. In this context, a review of our attempt to define and classify foresight knowledge as well as expertise could be relevant. Another question relates to the challenge of taking into account the societal dimension of science and communication to improve transferability of scientific knowledge (Tuebke et al. 2001, Gibbons et al. 2010). Interdisciplinary and collaborative approaches have proven to generate opportunities for creating and transferring new knowledge, also beyond the academic borders (Coulter 2013). The potential of ML tools to help opening a research process to a wider audience and to contribute to more transparent sense-making processes is high in our view. Especially when considering the idea of creating “machines for making and communicating research” (Jungnickel 2020), ML tools could provide a useful basis for exchange and discussion. This consideration that relates to the societal dimension of knowledge production and science communication could be further explored (Tuebke et al. 2001, Gibbons et al. 2010)and might also feed into the concept of the the science communication knowledge cascade (Jensen and Gerber 2020), which currently is mainly focused on the areas of research and practice. We also see a strong future potential of the combined (open) science communication and foresight approach. In our view, the endeavour to identify evidence in forward-looking statements from public news media data raises questions that are highly relevant for the relation between science and society. Here, we see a strong potential for the application of similar ML supported approaches in the field of science communication research. 
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[bookmark: _Ref95292478]Table 1: Corpus overview, results of the classification process.
	
	2019
	2020

	Total number of articles
	201,496
	189,391

	Number of (potential) forward-looking statements
	27,195 (13.49%)
	25,633 (13.53%)

	Number of articles mentioning Covid-19 pandemic
	34 (0.02% of total)
	97,447 (51.45% of total)

	Number of (potential) forward-looking statements from articles mentioning Covid-19 pandemic
	0
	15,294 (8.08%)



[bookmark: _Ref95292621]Table 2: Unique person names from forward-looking statements. In brackets, we give the number of persons that can be found in Dimensions. (* compared with total of 2019)
	
	2019
	2020
	Overlap between 2020 and 2019

	Number of person names 
	3,405 (1,980)
	3,725 (2,872)
	618 (533)

	Number of person names (from pandemic-related articles)
	0
	2,262 (1,409)
	342 (228)*



[bookmark: _Ref78570434]Table 3: Twenty most mentioned names identified in the extracted forward-looking statements. In brackets, we give different spellings for person names, wherever applicable.
	Name
	Counts
	Profession

	Donald Trump (Donald J. Trump)
	125
	politician

	Anthony Fauci (Anthony S. Fauci)
	36
	epidemiologist

	Mitch McConnell
	28
	politician

	Jerome H. Powell (Jerome Powell
	18
	politician

	Antonio Guterres
	15
	politician

	Boris Johnson
	15
	politician

	Robert Redfield
	14
	virologist

	Barack Obama
	12
	politician

	George Floyd
	11
	citizen

	Nancy Pelosi
	11
	politician

	Xi Jinping
	10
	politician

	Kamala Harris
	10
	politician

	Tedros Adhanom Ghebreyesus
	10
	epidemiologist, WHO head

	George W. Bush
	10
	politician

	Bernie Sanders
	9
	politician

	Hillary Clinton
	9
	politician

	Tom Frieden
	7
	physician



[bookmark: _Ref95292763]Table 4: Most cited actors in context of Covid-19 after manually filtering out the names of individuals without scientific background.
	Name
	Count
	Expertise

	Anthony (S.) Fauci
	36
	epidemiologist

	Robert Redfield
	14
	virologist

	Tedros Adhanom Ghebreyesus
	10
	epidemiologist, WHO head

	Tom Frieden
	7
	physician

	Nancy Messonnier
	6
	physician

	Deborah Birx
	5
	physician, diplomat

	Richard Besser
	3
	doctor, executive

	Michiko Ueda
	3
	political scientist

	Christopher Murray
	3
	researcher

	Ramanan Laxminarayan
	3
	economist, epidemiologist

	Leana Wen
	3
	physician, columnist, former health commissioner
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	Person name
	Identified forward-looking statement used for comparison 
	Forward-looking statement prediction score

	Anthony Fauci
	The Food and Drug Administration could authorize the vaccines for emergency use by mid- to late December. You don't want to get ahead of yourself and claim any victories, but this has the makings of a very, very important positive impact on ending this outbreak, said Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases. A vaccine that is highly efficacious, if taken by a very, very high percentage of people, could potentially crush this outbreak similar to what was done with outbreaks of measles and polio and smallpox and other diseases.
	0.99

	Anthony Fauci
	Dr Anthony Fauci, infectious diseases chief at the National Institutes of Health, in several television interviews on Friday, said more tests would be available over the next week, but that officials should not wait before trying to mitigate the virus's effects. "We will have considerably more testing in the future, but you don't wait for testing," Fauci said on "CBS This Morning." He said school closing and similar measures are "generally an appropriate approach".
	0.99

	Beth Tarasawa
	Using existing data on learning loss typically seen in the summer from a national sample of over five million students in grades three through eight, Kuhfeld and her colleague, Beth Tarasawa, predict that extended school closures could potentially cause serious academic setbacks for students struggling to adapt to remote instruction. In a worst-case scenario, they may retain only 70% of the gains they had made in reading and only 50% of the gains made in math. Math could be a particular sticking point, Kuhfeld said.
	0.68

	Angela Merkel
	While some of the budget provisions could pass the Democratic House, others, like the elimination of the student loan forgiveness plan, will have a much harder time getting through. Germany's political future is mired in uncertainty after longtime Chancellor Angela Merkel's hand-picked successor, Annegret Kramp-Karrenbauer, unexpectedly announced that she will not run for chancellor in the 2021 general election. Merkel, who has led Germany for 15 years, is not planning to run for reelection.
	0.94
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	Publication
	Year
	Total number of articles
	Number of articles mentioning (Covid-19) pandemic

	CNA (Channel News Asia)
	2019
	69811
	12

	
	2020
	64842
	37057

	The Washington Post
	2019
	50395
	7

	
	2020
	31361
	15138

	CNN
	2019
	25204
	7

	
	2020
	26780
	13261

	Al Jazeera English
	2019
	15081
	1

	
	2020
	17369
	8256

	Hindustan Times
	2019
	12745
	0

	
	2020
	23401
	10531

	BBC News
	2019
	9593
	5

	
	2020
	9107
	4645

	The Wall Street Journal
	2019
	9311
	1

	
	2020
	6767
	3160

	POLITICO.eu
	2019
	4685
	0

	
	2020
	5202
	2921

	The Economist
	2019
	4448
	3

	
	2020
	3998
	2131

	Total
	
	390100
	97136



[bookmark: _Ref95735310]Figure 1: Foresight cycle
[image: ]
Data Availability Statement
The datasets analyzed for this study can be found in the GitHub repository, once eventual legal requirements are satisfied: https://github.com/janrn/scicomm-evidence. Please see the Data Availability section of the Author guidelines for more details.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
	
	
	



This is a provisional file, not the final typeset article
22

23

image1.png




image2.jpg
’ frontiers




