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S1 Velocity derivatives by an inversion of the parabolic fitting
A key step of the developed method is the expression of the local derivative of the velocity vector by

means of the velocity evaluated at the nodes of the numerical mesh, as detailed in section 3.5 of the main
part. This can be directly used to replace the velocity derivatives in the force balance equations such that
we end up with a system of equations that is solvable for the velocities. In the following, we provide details
on the analytical procedure behind this important step. As illustrated by equation (48) in the main part
we use a parabolic fitting procedure of the velocity vector in the vicinity of each node, which we invert
analytically. This in turn results in the velocity derivativesAv,Bv, . . . ,Ev evaluated at a node in terms of
the velocity vectors of the node rν and its Nν neighboring nodes, which are referred to by a(ν) . With the
differential form of equation (48)

d(χ2
v) =

∑
i

Nν∑
a=1

2 (v̄ − va)i dvi, (S1.1)

we are able to minimize χ2
v with respect to the components of the fitting coefficients, e.g., Ajv

∂(χ2
v)

∂Ajv
=
∑
i

∑
a

2 (v̄ − va)i
∂v̄i

∂Ajv︸︷︷︸
ξδij

=
∑
a

2 (v̄ − va)j ξ
!

= 0. (S1.2)

Here, we clearly see that each component j = x, y, z is minimized individually. Performing the minimiza-
tion by calculating all derivatives with respect toAv, . . . ,Ev we end up with a system of linear equations
with Av,Bv, . . . ,Ev building the solution vector. By solving this system we obtain Av,Bv, . . . ,Ev in
terms of the velocity evaluated at the central and neighbor nodes.

We solve this system of linear equations analytically as detailed below. Since each velocity component
can be treated separately, we illustrate the procedure in the following for a scalar fitting parameter only.

We consider a parabolic expansion of a quantity f around a central node rν in its local coordinates (ξ, η).
At the position of the neighbors a the expansion should be equal to the actual value of the function f
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evaluated at the neighboring nodes as in equation (48)

f̄ν(ξa, ηa) = fν + Pνa
!

= fa(ν), (S1.3)

with
Pνa = Aξa +Bηa +

1

2
Cξ2

a +
1

2
Dη2

a + Eξaηa. (S1.4)

We consider a χ2
f analogous to equation (48) and proceed as in equation (S1.2) with a minimization of χ2

f
to obtain

∂

∂A

(
χ2
f

)
= 2

∑
i

[
fa(ν) − f̄ν(ξa, ηa)

]
ξa = 0,

∂

∂B

(
χ2
f

)
= 2

∑
i

[
fa(ν) − f̄ν(ξa, ηa)

]
ηa = 0,

∂

∂C

(
χ2
f

)
= 2

∑
i

[
fa(ν) − f̄ν(ξa, ηa)

] 1

2
ξ2
a = 0,

∂

∂D

(
χ2
f

)
= 2

∑
i

[
fa(ν) − f̄ν(ξa, ηa)

] 1

2
η2
a = 0,

∂

∂E

(
χ2
f

)
= 2

∑
i

[
fa(ν) − f̄ν(ξa, ηa)

]
ξaηa = 0.

Re-writing these equations using equation (S1.3) we get∑
a

Pνaξa =
∑
a

(
fa(ν) − fν

)
ξa,∑

a

Pνaηa =
∑
a

(
fa(ν) − fν

)
ηa,

∑
a

Pνa
1

2
ξ2
a =

∑
a

(
fa(ν) − fν

) 1

2
ξ2
a,

∑
a

Pνa
1

2
η2
a =

∑
a

(
fa(ν) − fν

) 1

2
η2
a,∑

a

Pνaξaηa =
∑
a

(
fa(ν) − fν

)
ξiηa.

Inserting (S1.4) we obtain for example for the first equation

(
∑
a

ξ2
a)A+ (

∑
a

ηaξa)B + (
∑
a

1

2
ξ3
a)C + (

∑
a

1

2
η2
aξa)D + (

∑
a

ηaξ
2
a)E =

∑
a

(fa(ν) − fν)ξa. (S1.5)
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Taking all equations together and using the separation with respect to the fitting coefficients we obtain a
system of linear equations

α ·



A

B

C

D

E


=



∑
a(fa(ν) − fν)ξa∑
a(fa(ν) − fν)ηa∑
a(fa(ν) − fν)1

2ξ
2
a∑

a(fa(ν) − fν)1
2η

2
a∑

a(fa(ν) − fν)ξaηa


= rs, (S1.6)

with rs denoting the right hand side and the symmetric 5 × 5 matrix α, i.e., αmn = αlm with m,n =
1, . . . , 5, being

α11 =
∑
a
ξ2
a

α12 =
∑
a
ξaηa α22 =

∑
a
η2
a αmn = αlm

α13 =
∑
a

1
2ξ

3
a α23 =

∑
a

1
2ξ

2
aηa α33 =

∑
a

1
4ξ

4
a

α14 =
∑
a

1
2ξaη

2
a α24 =

∑
a

1
2η

3
a α34 =

∑
a

1
4ξ

2
aη

2
a α44 =

∑
a

1
4η

4
a

α15 =
∑
a
ξ2
aηa α25 =

∑
a
ξaη

2
a α35 =

∑
a

1
2ξ

3
aηa α45 =

∑
a

1
2ξaη

3
a α55 =

∑
a
ξ2
aη

2
a


. (S1.7)

By inverting the matrix α to β = α−1 we can obtain the fitting parameters by
A
B
C
D
E

 = β · rs. (S1.8)

Using Mathematica, we obtain the inverse of a general symmetric 5× 5 matrix α with entries αmn, which
we term βmn. Inserting the actual values αmn as given above, we calculate the numerical elements of the
inverse matrix βmn.
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With the inverse matrix and using equation (S1.8) we obtain the fitting coefficients

A =
5∑

n=1

β1nrsn = A({fµ}), (S1.9)

B =
5∑

n=1

β2nrsn = B({fµ}), (S1.10)

C =
5∑

n=1

β3nrsn = C({fµ}), (S1.11)

D =
5∑

n=1

β4nrsn = D({fµ}), (S1.12)

E =
5∑

n=1

β5nrsn = E({fµ}), (S1.13)

as functions of the quantity f evaluated at the nodes, i.e., of the set {fµ}. Thus, A,B, . . . , E are linear
combinations of the function values, in particular of the vales at the central node ν and its neighbors. As a
consequence the derivatives ∂

∂fµ
A, which are required for the minimization ansatz, can easily be calculated.

In order to calculate the derivatives we re-write the expressions for the coefficients. Using the definition
of rs in eq. (S1.6) we obtain

A =
∑
a

(
β11ξa + β12ηa + β13

1

2
ξ2
a + β14

1

2
η2
a + β15ξaηa

)
︸ ︷︷ ︸

pAa

fa+

(−1)

[
β11

(∑
ξa

)
+ β12

(∑
ηa

)
+ β13

(∑ 1

2
ξ2
a

)
+ β14

(∑ 1

2
η2
a

)
+ β15

(∑
ξaηa

)]
︸ ︷︷ ︸

pAν

fν ,

B =
∑
a

(
β12ξa + β22ηa + β23

1

2
ξ2
a + β24

1

2
η2
a + β25ξaηa

)
fa+

(−1)

[
β12

(∑
ξa

)
+ β22

(∑
ηa

)
+ β23

(∑ 1

2
ξ2
a

)
+ β24

(∑ 1

2
η2
a

)
+ β25

(∑
ξaηa

)]
fν ,

C =
∑
a

(
β13ξa + β23ηa + β33

1

2
ξ2
a + β34

1

2
η2
a + β35ξaηa

)
fa+

(−1)

[
β13

(∑
ξa

)
+ β23

(∑
ηa

)
+ β33

(∑ 1

2
ξ2
a

)
+ β34

(∑ 1

2
η2
a

)
+ β35

(∑
ξaηa

)]
fν ,
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D =
∑
a

(
β14ξa + β24ηa + β34

1

2
ξ2
a + β44

1

2
η2
a + β45ξaηa

)
fa+

(−1)

[
β14

(∑
ξa

)
+ β24

(∑
ηa

)
+ β34

(∑ 1

2
ξ2
a

)
+ β44

(∑ 1

2
η2
a

)
+ β45

(∑
ξaηa

)]
fν ,

E =
∑
a

(
β15ξa + β25ηa + β35

1

2
ξ2
a + β45

1

2
η2
a + β55ξaηa

)
fa+

(−1)

[
β15

(∑
ξa

)
+ β25

(∑
ηa

)
+ β35

(∑ 1

2
ξ2
a

)
+ β45

(∑ 1

2
η2
a

)
+ β55

(∑
ξaηa

)]
fν .

Using the notation indicated in the first line, we can write

A =
∑
a

pAa fa + pAν fν ,

B =
∑
a

pBa fa + pBν fν ,

C =
∑
a

pCa fa + pCν fν ,

D =
∑
a

pDa fa + pDν fν ,

E =
∑
a

pEa fa + pEν fν . (S1.14)

The prefactors in front of fν and fa, respectively, are the derivatives of the coefficients with respect to fµ
(in case of µ = ν and µ = a(ν), respectively).

S2 Analytical solution for flows on a sphere in terms of spherical harmonics
In the following, we derive an analytical solution for the spherical cortex of radius R with an active

surface stress distribution in terms of spherical harmonics as given by equation (50). Here, the coordinates
with Greek letter index α, β, γ refer to the spherical coordinates on a sphere (θ, φ), such that a point on the
sphere is given by

X(θ, φ) = R [sin θ cosφex + sin θ sinφey + cos θez] . (S2.1)

The corresponding tangent vectors in eq. (1) on the sphere are given by

eθ =∂θX = R [cos θ cosφex + cos θ sinφey − sin θez] (S2.2)

eφ =∂φX = R [− sin θ sinφex + sin θ cosφey] . (S2.3)

The metric in eq. (3) evaluates to

gαβ = R2

(
1 0

0 sin2 θ

)
(S2.4)
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and the curvature tensor in eq. (4) is Cαβ = 1
Rδ

β
α. In the following, we also use the Levi-Civita tensor on

the surface, defined by

εαβ = (eα × eβ) · n. (S2.5)

Spherical harmonics. We now discuss briefly scalar, vector and tensorial spherical harmonics. The
spherical harmonics expansion of a general scalar field on the sphere f(θ, φ) reads

f(θ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, φ), (S2.6)

where the spherical harmonics

Ylm(θ, φ) = αlmP
m
l (cos θ)eimφ, (S2.7)

with Pml (x) the associated Legendre polynomials, are eigenfunctions of the Laplace equation on the sphere

R2∇α∇αYlm = −l(l + 1)Ylm. (S2.8)

The coefficients αlm are given by

αlm =

√
(2l + 1)(l −m)!

4π(l +m)!
(S2.9)

so that the orthonormality condition

θ=π∫
θ=0

φ=2π∫
φ=0

YlmY
∗
l′m′ sin θdθdφ = δll′δmm′ , (S2.10)

where the asterisk denotes complex conjugation, is satisfied.

A general tangent vector field a on the sphere admits an expansion in terms of vectorial spherical
harmonics (Barrera et al., 1985)

a =
∑
l,m

a1
lms

1
lm + a2

lms
2
lm, (S2.11)

where we now use the short-hand notation (l,m) for summation over spherical harmonics. The vectorial
spherical harmonics s1

lm, s2
lm are defined by:

s1
lm =R(∂αYlm)eα

s2
lm =n× s1

lm = Rεαβ(∂αYlm)eβ.

For a non-tangent vector field, the normal component is a scalar field which itself can be expanded in
spherical harmonics according to eq. (S2.6).
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We also use the following definition of traceless symmetric tensorial spherical harmonics

S1,αβ
lm =

R2

2
[∇α∇β +∇β∇α − gαβ∇γ∇γ ]Ylm

S2,αβ
lm =

R2

2
[εγα∇β∇γ + εγβ∇α∇γ ]Ylm. (S2.12)

Using eq. (S2.8), one can verify that the tensorial spherical harmonics satisfy the following identities

∇α∇βS1,αβ
lm =

l(l + 1)

2R2
(l(l + 1)− 2)Ylm (S2.13)

εβα∇β∇γS
1,γα
lm =0 (S2.14)

∇α∇βS2,αβ
lm =0 (S2.15)

εβα∇β∇γS
2,γα
lm =

l(l + 1)

2R2
(l(l + 1)− 2)Ylm. (S2.16)

Active surface stress driven flows on a sphere. We now consider flows on a sphere driven by the
isotropic active surface stress ζ(θ, φ)gαβ in eq. (49). The isotropic active stress ζ(θ, φ) can be expanded in
spherical harmonics according to equation (50).

The velocity field v has a normal component which can be expanded in spherical harmonics and a
tangential part which can be expanded in vector spherical harmonics such that the velocity becomes

v =
∑
l,m

[
v1
lms

1
lm + v2

lms
2
lm + vnlmYlmn

]
, (S2.17)

where dependencies on θ, φ have been omitted for compactness of the notation. Here, we use the convention
v1

00 = v2
00 = 0 as s1

00 = s2
00 = 0.

We now aim to relate the coefficients of the velocity expansion v1
lm, v2

lm and vnlm to the coefficients of the
active surface stress expansion ζlm. For this, we first note that the viscous part of the surface stress tensor
defined by eq. (15)

tv,αβ = 2ηs

(
1

2

[
∇αvβ +∇βvα

]
+ Cαβv

n − 1

2
gαβ∇γvγ −

1

2
gαβC

γ
γ v

n

)
+ ηb(∇γvγ + Cγγ v

n)gαβ

(S2.18)

has an expansion in terms of spherical harmonics of the following form

tαβv =
2ηs
R

∑
l,m

[v1
lmS

1,αβ
lm + v2

lmS
2,αβ
lm ] +

ηb
R
gαβ

∑
l,m

[−l(l + 1)v1
lm + 2vnlm]Ylm, (S2.19)

where we have used eq. (S2.8), the definition of the trace-less tensorial spherical harmonics in eq. (S2.12)
and the expression for the curvature tensor on the sphere.
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We now solve the three force balance equations, where the tangential ones are rewritten into two separate
scalar equations

∇α∇βtαβ = 0 (S2.20)

εγβ∇γ∇αt
αβ = 0 (S2.21)

tαβCαβ = P. (S2.22)

Projecting the force balance equations on spherical harmonics and using eq. (S2.8) and eqs. (S2.13) -
(S2.16) we obtain [(

ηs
ηb

+ 1

)
l(l + 1)− 2

ηs
ηb

]
v1
lm − 2vnlm =

Rζlm
ηb

(S2.23)

(l(l + 1)− 2)v2
lm =0 (S2.24)

l(l + 1)v1
lm − 2vnlm =

Rζlm
ηb
− R2Plm

2ηb
(S2.25)

where we have also introduced the decomposition of the pressure acting on the thin shell P (θ, φ) =∑
l,m

PlmYlm(θ, φ). In the absence of an external net force on the sphere it applies P1m = 0, which we

assume is the case here.

For l = 1, the system is undetermined due to the invariance of the equations under solid translation and
rotation. As detailed in section 3.2, the introduction of additional constraints for the motion of the center of
the sphere and its solid rotation in eqs. (36) and (37) is required to completely solve for the velocity field.
For l > 1, one has in general v2

lm = 0.

Throughout the manuscript we consider a uniform pressure P00 and therefore we obtain for the zeroth-
order of the spherical harmonics, i.e., l = 0, m = 0,

2ζ00

R
+

4ηbv
n
00

R2
= P00. (S2.26)

The incompressibility condition for the fluid inside the cell in eq. (35) implies vn00 = 0 and the pressure is
determined by the Laplace pressure 2 ζ00√

4πR
with ζ00√

4π
representing the constant average active surface stress.

For higher order harmonics, l > 1, we obtain in that case v1
lm = 0 and the normal velocity component

vnlm = −Rζlm
2ηb

. (S2.27)

If we consider the case where the sphere can not deform, such that vnlm = 0, the normal force balance
equation (S2.25) becomes an equation for the pressure field exerted by the surface with coefficients Plm,
and the tangential velocity field is given for l > 1 by

v1
lm =

Rζlm
(ηs + ηb)l(l + 1)− 2ηs

. (S2.28)
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Figure S1. Variation of the reference neighboring node. The choice of the reference neighboring node,
which serves for the construction of the local coordinate system, does not influence the numerical solution
as illustrated by the constant error.

S3 Choice of reference neighbor does not affect results
As we detail in section 3.1 of the main part, for each node of the discretized thin shell representing the

cell cortex a local coordinate system is constructed by use of one neighboring node as reference node. In
order to prove evidence that this choice is arbitrary we consider the setup with non-axisymmetric active
surface stress distribution in figure 3 of the main part with a fixed sphere discretized by 2562 nodes. Here,
we systematically vary the reference neighbor node, run one simulation per reference neighbor node, and
quantify the deviation to the analytical solution in terms of the errors defined in equations (57) and (58).
Figure 13 shows a constant error for varying reference neighbor node. Therefore, we are able to conclude
that the choice of the reference neighbor node for local coordinate system construction is arbitrary.

S4 Axisymmetric simulations
Here we briefly describe the simulation approach for an axisymmetric viscous active cortex that is used

to generate the cell surface dynamics, to which the three-dimensional method is compared in section 4.2
(see figures 5, 7, and 8 in the main part). For more details on this numerical approach we refer to ref.
(Khoromskaia and Salbreux, 2021).

In this approach we introduce a bending moment tensor

m̄αβ = ηcb

(
D

Dt
Cγγ

)
gαβ, (S4.1)

with the corotational time derivative of the trace of the curvature tensor (Salbreux and Jülicher, 2017)

D

Dt
Cγγ = ∂tC

γ
γ + vδ∇δCγγ , (S4.2)

where the trace of the corotational term vanishes. This choice of m̄αβ provides an alternative way to
introduce damping in changes to the surface mean curvature, similarly to the bending viscosities η̄ and
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η̄b used in the three-dimensional method (see section 3.4 of the main part). Since ηcb is also chosen to be
small, ηcb = 10−6R2ηs, we expect that the two alternative damping contributions result in dynamics that
are close to each other.

The surface stress tensor, or tension tensor, is taken as in Equations (14) and (15), with the transformation
tij → tij+

1
2(m̄ikCk

j+m̄jkCk
i). These additional terms contribute naturally when considering constitutive

equations for a surface subjected to internal bending moments (Salbreux and Jülicher, 2017).

The force balance equations (12) and (13) are amended to include the moment tensor via the normal
surface stress tαn = ∇γm̄γα,

∇αtαβ + C β
α tαn = 0 (S4.3)

∇αtαn − Cαβtαβ = −P. (S4.4)

The axisymmetric cortex is parametrized by the arc length s ∈ [0, L], with L the pole-to-pole perimeter,
and the azimuthal angle φ ∈ [0, 2π] as

X(φ, s) = (x(s) cos(φ), x(s) sin(φ), z(s)) . (S4.5)

The arc length coordinate is chosen such that gss = 1. The metric tensor is diagonal and therefore diagonal
components in mixed coordinates are equal, i.e. for a tensor A, Ass = As

s = Ass andAφφ = Aφ
φ = Aφφ. In

this parametrization the force balance equations (S4.3) and (S4.4), together with the constitutive equations
(S4.1) and (14) and (15) given in the main text, become three second-order equations in s, one each for the
velocity components vs and vn and the torque component m̄s

s, which can be rewritten as a system of first-
order differential equations (see ref. (Khoromskaia and Salbreux, 2021) for more details). These differential
equations are integrated numerically using the boundary value problem solver bvp4c by MATLAB, which
implements a fourth-order collocation method on an adaptive spatial grid. For the solver we use the relative
tolerance εrel = 10−4 and the absolute tolerance εabs = 10−6. For the examples considered here, this
results in typical grid sizes of N ≈ 100.

We use an isotropic active surface stress profile of the form

ζss (s, φ, t = 0) = ζφφ (s, φ, t = 0) = ζ(s, φ, t = 0) = ζ0 + ζ̂ exp

(
−
(

(s− πR/2)2

2σ̄2

)p̄)
, (S4.6)

and the parameters relate to those in equation (59) as s = Rθ, p̄ = p/2, and σ̄ = R(
√

2 p
√
σ)−1. Because the

active surface stress profile is up-down symmetric with respect to the equator of the cortex, the equations
are solved on the reduced interval 0 ≤ s ≤ L

2 . The required boundary conditions on the south pole are

vs(0) = ∂svn(0) = ∂sm̄
s
s(0) = 0. (S4.7)

With the active surface stress profile up-down symmetry considered here, the flow field v(s) satisfies the
symmetry condition vs(s) = −vs(L− s) and vn(s) = vn(L− s), and the bending moment tensor satisfies
m̄s
s(s) = m̄s

s(L− s). Therefore, by symmetry the boundary conditions at the equator can be written:

vs
(
L

2

)
= ∂sv

n

(
L

2

)
= ∂sm̄

s
s

(
L

2

)
= 0. (S4.8)
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The condition on vs ensures that the cortex is not displaced in z-direction and therefore takes the role of
the total velocity constraint (36), which in this setup reduces to 2π

∫ L
0 ds xvz = 0. The incompressibility

constraint (35) is incorporated into the system of ode’s in the form of an equation for the partial rate of
volume change v(s) = 2π

∫ s
0 ds

′ xvn with the boundary conditions v(0) = v(L/2) = 0. The constraint
(37) which reduces to

∫
S dS x

2vφ = 0, is automatically satisfied in the axisymmetric setup since vφ = 0.

At each time step the shape and all surface quantities, except for the active surface stress profile ζ(s, φ, t),
are updated in a Lagrangian frame via

X′(s, φ, t+ ∆t) = X(s, φ, t) + v(s, φ, t)∆t, (S4.9)

using the full velocity vector v = vses + vnn. Subsequently, the surface is reparametrised to a new arc
length parameter s′(s), X′(s, φ, t + ∆t) → X′(s′, φ, t + ∆t), which is calculated from the condition
gs′s′ = 1 on the updated surface. For comparison with the three-dimensional method we also calculate
the relationship between the arc length parameters at t and t+ ∆t based on a surface update in the Euler
approach, X′(sE , φ, t + ∆t) = X(sE , φ, t) + vn(sE , φ, t)n∆t, where sE is the Euler coordinate. This
second reparametrisation s′(sE) is used to update the active surface stress profile on the cortex as

ζ ′(s′, φ, t+ ∆t) = ζ(sE(s′), φ, t), (S4.10)

such that it evolves in the same way as described in section 4.2 of the main part. All surface quantities are
passed to the next time step as spline interpolants. The time step in the simulation is ∆t = 10−4ta.
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