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In the simulation, we model the equilibrium magnetic state by using the Landau-Lifshitz-
Gilbert (LLG) equation with Langevin dynamics, given by [S1, S2]:
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where §; is an unit vector denoting the direction of the spin at site i, A and y are the microscopic
thermal bath coupling parameter and the gyromagnetic ratio, respectively, and 4 is the atomistic
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magnetic moment. The effective field acting on spin at site i can be expressed as H; = — a5, + G, (0).

The effect of thermal fluctuations on the magnetic dynamics can be defined by the stochastic fields
€; () through fluctuation dissipation theory as <Cf(t)> = 0 and <Cf (t)C;(t')> = 20, ;8;,6(t —
t")AkgT 1 /v, where i and j represent the lattice sites, & and / denote the Cartesian components. In the
simulations, we choose the typical parameters for GdFeCo as the exchange constant | = 2.835 x 102!

J per link, the anisotropy constant A = 3.130 x 1072! J per spin, the gyromagnetic ratio y = 1.76 x 10!
T™'S™!, the magnetic moment 41, = 1.92u, (4 is the Bohr magneton) , and 4 =0.05 [S1, S2].

To understand the laser pulse induced ultrafast magnetization dynamics, we simulate the
thermodynamic behavior of macrospins by using the Landau—Lifshitz—Bloch (LLB) equation [S3-S6]:

dm; _ erfy , 7o eff
=7 (m; x HT) +W[mi : (Hi + Cl.'”)] m;
l
Yy ef f
= {m; x [m;x (B +¢, )]}, (A2)
where ¥ = (1+y ) Hief F=— M?;[m. + H; denotes the effective field acting on spin at site i, with
S i

M2 the value of spontaneous magnetization at zero temperature. C; I and g, | are the longitudinal and

transverse stochastic fields, respectively. In the simulations, we consider that the magnetization evolves
under temperature 7 < 7., with the temperature-dependent longitudinal and transverse damping
parameters ) and a, written as
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The internal exchange field H; controlling the length of the magnetization, which is defined as
1 m?
T2 < mﬁ) " (4

where the zero-field-reduced equilibrium magnetization m,, and the equilibrium longitudinal
susceptibility ¥, = dm/dH, are calculated from the fluctuations of magnetization using the Langevin
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LLG stochastic equation (equation (Al)), with 7 = % (< 5”2 > =< >2 ), and N the number of
B

spins.

In the simulations, the atomistic spins are coupled to the temperature of the electronic spins,
namely T = T,(t), with the temporal evolution function T(t) which can be determined using the
three-temperature model as [S7-S9] :

dT,
Ce(Te)d_te = _Gel(Te - Tl) - Ges(Te - Ts) + P(t);

dT.
CS(TS) d_ts = _Ges(Ts - Te) - Gsl(Ts - Tl)'

T

6T S = ~6alTy ~T,) = 6Ty~ T,) = G, (T~ Ty), (45)
where C,, C, and C; are the specific heats of electron, spin and lattice, and the parameters G,;, G, G
are the electron—lattice, electron—spin and spin—lattice coupling constants respectively, and G, is the
thermal dissipation factor of the lattice in the environmental temperature (T, = 300 K). P(t) is the
laser power density absorbed in the material with approximate Gaussian form. In our simulations, the
typical parameters for the coupling constants and specific heats are taken similar to that used in
references [S7-S9].
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