Supplementary Material

Figure S1. Quantification of GFP-tagged Hu-beta and HNH endonuclease using a PerkinElmer Victor X3 microplate reader. (**A**) GFP fluorescence from tagged Hu-beta and HNH endonuclease in wild-type BGR1 and QS mutants was measured after 18 h at 37 °C. (**B**) The fluorescence intensity of GFP-tagged HNH endonuclease and Hu-beta in wild-type BGR1 was detected after 4 h of artificially induced alkaline stress. Data are mean \pm SE of triplicate experiments. The letters (a, and b) above each mean represent groupings of statistical significance based on ANOVA/Tukey's correction for multiple comparisons. A value of p < 0.05 represents significant differences among strains.

Strain or plasmid	Genotype or phenotype ^a	Reference or source	
Escherichia coli			
	$F^{\Phi}80dlacZ\Delta M15\Delta(lacZYA-argF)$ U169endA1	Gibco BRL	
DH5a	$recA1hsd1hsdR17(r_{k}m_{k}^{+})$ $deoRthi-1supE44\lambda^{-}$		
	gyrA96 relA1		
DH5α λpir	$F^{\Phi}80dlacZ\Delta M15\Delta(lacZYA-argF)$ U169endA1	(Choi et al., 2006)	
	$recAlhsdIhsdR17(r_{k}m_{k}^{+})$ $deoRthi-1supE44\lambda^{-}$		
	gyrA96 relA1, λpir		
HB101	F ⁻ mcrBmrrhsdS20(r _B ⁻ m _B ⁻)recA13leuB6ara-14	Gibco BRL	
	proA2lacY1galK2xyl-5 mtl-1 rpsL20(Sm ^r) supE44λ ⁻		
S17-1 λ <i>pir</i>	Tp^{r} Sm^{r} recA, thi, pro, $hsdR^{-}M^{+}$ RP4::2-	(Choi et al., 2006)	
	Tc::Mu:Km ::Tn7, <i>λpir</i>		
Burkholderia glun	nae		
BGR1	wild type, Rif ^r	(Jeong et al., 2003)	
BGS2	BGR1 tofI::Ω	(Kim et al., 2004)	
BGS9	BGR1 $qsmR::\Omega$	(Kim et al., 2007)	
BGHU	BGR1::Hu-beta-eGFP-miniTn7	This study	
S2HU	BGS2::Hu-beta-eGFP-miniTn7	This study	
S9HU	BGS9::Hu-beta-eGFP-miniTn7	This study	
BGHNH	BGR1::HNH endonuclease-eGFP-miniTn7	This study	
S2HNH	BGS2:: HNH endonuclease -eGFP-miniTn7	This study	
S9HNH	BGS9:: HNH endonuclease -eGFP-miniTn7	This study	
Plasmids			
pBluescript II	Cloning vehicle; phagemid, pUC derivative, Amp ^r	Stratagene	
SK(+)			
pRK2013	Tra ⁺ , ColE1 replicon, Km ^r	(Keen et al., 1988)	
pUC18R6K-	Mobilizable mini-Tn7-Tc vector, Amp ^r , Tet ^r	(Choi et al., 2006)	
miniTn7T-Tc			
pTNS2	Plasmid expressing <i>tnsABCD</i> from Plac, Ampr	(Kim et al., 2013)	

Table S1. Bacterial strains and plasmids used in this study.

pJW23	Coding region of <i>egfp</i> was cloned into pGEM-T Easy	(Jang et al., 2014)
	vector	
pLAFR3	Tra ⁻ , Mob ⁺ RK2 replicon, Tet ^r	(Staskawicz et al., 1987)
pLAFR6	pLAFR3 but without <i>lacZa</i> , contains multilinker of	(Huynh et al., 1989)
	pUC18 flanked by synthetic <i>trp</i> terminators, Tet ^r	
pBP1	trc promoter and NdeI site were cloned upstream of	
	MSC in pBluescript II SK(+)	This study
pHU1	499-bp PCR product containing the promoter and	
	coding region of Hu-beta inserted at the SmaI site of	This study
	pBluscript II SK(+)	
pHNH1	666-bp PCR product containing the promoter and	This study
	coding region of HNH endonuclease inserted at the	
	SmaI site of pBluscript II SK(+)	
pHU2	0.5-kb SacI-XhoI DNA fragment harboring Hu-beta	This study
	from pHU1 cloned into pJW23	
pHNH2	0.6-kb SacI-XhoI DNA fragment harboring HNH	This study
	endonuclease from pHNH1 cloned into pJW23	
pHU3	1.3-kb SacI-EcoRI DNA fragment harboring Hu-	This study
	beta-egfp from pHU2 cloned into pUC18R6K-	
	miniTn7T-Tc	
pHNH3	1.4-kb SacI-EcoRI DNA fragment harboring HNH	This study
	endonuclease-egfp from pHNH2 cloned into	
	pUC18R6K-miniTn7T-Tc	
pPHI1	717-bp PCR product of ratiometric pHluorin inserted	This study
	at the <i>Sma</i> I site of pBluscript II SK(+)	
pPHI2	0.5-kb NdeI-BamHI partial DNA fragment	This study
	harboring ratiometric pHluorin cloned into pBP1	
	carrying <i>trc</i> promoter	
pPHI3	0.2-kb NdeI-NdeI partial DNA fragment harboring	This study
	ratiometric pHluorin cloned into pPHI2 carrying trc	
	promoter	

pPHI4	1.2-kb SacI-BamHI DNA fragment containing trc	This study
	promoter and harboring ratiometric pHluorin from	
	pPHI3 cloned into pLAFR6	
pNha1	1.6-kb PCR product of Na ⁺ /H ⁺ antiporter	This study
	(BGLU_1G32530) inserted at the SmaI site of	
	pBluscript II SK(+)	
pNha4	1.6-kb NdeI–BamHI DNA fragment harboring	This study
	Na ⁺ /H ⁺ antiporter (BGLU_1G32530) cloned into	
	pBP1 carrying <i>trc</i> promoter	
pNha7	1.6-kb SacI-KpnI DNA fragment containing trc	This study
	promoter and harboring Na ⁺ /H ⁺ antiporter	
	(BGLU_1G32530) from pNha4 cloned into pLAFR6	
oNha2	1.6-kb PCR product of Na ⁺ /H ⁺ antiporter NhaD	This study
	(BGLU_1G09320) inserted at the SmaI site of	
	pBluscript II SK(+)	
oNha5	1.6-kb NdeI–BamHI DNA fragment harboring	This study
	Na ⁺ /H ⁺ antiporter NhaD (BGLU_1G09320) cloned	
	into pBP1 carrying trc promoter	
oNha8	1.6-kb SacI-KpnI DNA fragment containing trc	This study
	promoter and harboring Na ⁺ /H ⁺ antiporter NhaD	
	(BGLU_1G09320) from pNha5 cloned into pLAFR6	
oNha20	1.3-kb PCR product of Na ⁺ /H ⁺ antiporter-like	This study
	protein (BGLU_2G00450) inserted at the SmaI site	
	of pBluscript II SK(+)	
oNha22	1.3-kb NdeI–BamHI DNA fragment harboring	This study
	Na ⁺ /H ⁺ antiporter-like protein (BGLU_2G00450)	
	cloned into pBP1 carrying trc promoter	
pNha24	1.3-kb SacI-BamHI DNA fragment containing trc	This study
	promoter and harboring Na ⁺ /H ⁺ antiporter-like	
	protein (BGLU_2G00450) from pNha22 cloned into	
	pLAFR6	

pNha21	1.6-kb PCR product of Na ⁺ /H ⁺ antiporter This study					
	(BGLU_2G17030) inserted at the SmaI site of					
	pBluscript II SK(+)					
pNha23	1.6-kb NdeI–BamHI DNA fragment harboring This study					
	Na ⁺ /H ⁺ antiporter (BGLU_2G17030) cloned into					
	pBP1 carrying <i>trc</i> promoter					
pNha25	1.6-kb XbaI–HindIII DNA fragment containing trc This study					
	promoter and harboring Na ⁺ /H ⁺ antiporter					
	(BGLU_2G17030) from pNha23 cloned into					
	pLAFR6					
pNha12	1.3-kb PCR product of native promoter and <i>nhaA</i> of This study					
	E. coli inserted at the SmaI site of pBluscript II					
	SK(+)					
pNha13	1.3-kb SacI-KpnI DNA fragment harboring native This study					
	promoter and <i>nhaA</i> of <i>E. coli</i> cloned into pLAFR6					
pTrc-nhaA	1.3-kb SacI-HinIII DNA fragment harboring trc This study					
	promoter and <i>nhaA</i> of <i>E. coli</i> cloned into pLAFR6					

Rif^r, rifampicin resistance; Tet^r, tetracycline resistance; Km^r, kanamycin resistance; Amp^r; ampicillin resistance; Sm^r, streptomycin resistance.

Primers	Sequence (5' to 3')
1g08730-FS	CGAACTGAACAACGACTG GA
1g08730-FL	AGCTGCAGGACACGTTCG
1g08730-R	GCATCTCCTTCAGGTTCAGC
1g15690-F	GTCTACGCTCACCGAATTGC
1g15690-R	GACAGTATTGGCCGCGTTCT
1g09120-F	CACAGATCGAGGCGTTCCT
1g09120-R	GGTAATGGAAGAAGCGCTCG
1g09400-F	ATACCGAATCGTCGGCGCTG
1g09400-R	TCCTGGCGCTTTTCGTTGAG
1g13530-F	CGAAGCGGATTTATCGAAAG
1g13530-R	ATTGCGCGCGATCCTCTCAC
16S rRNA-F	TCTGAGAGGACGACCAGCCA
16S rRNA-R	CGAAGGCCTTCTTCACACAC
PHu-F	CAGGAGCTCATCCGAACCCTTTTCGGCAC
PHu-R	ACCCTCGAGGTTTAAGGCATCTTTCAGTGCTTTAC
PyajD-F	CAGGAGCTCCGCCAATTTCGATTTCGGTGGCCA
PyajD-R	ACCCTCGAGGTCGTCTCGCGAGTGTGTGAGC
glmS-down	AGCCGCAGATCATCGCCTG
1g32800-up	CCACGCATCGAAATCCTC
pHluorin-F	CCATATGAGTAAAGGAGAAGAACTTTTCACTGG
pHluorin-R	CCGGATCCTTATTTGTATAGTTCATCCATGCC
NhaA-F	CCAAGAGCTCCTATCTGCCGTTCAGCTAATGC
NhaA-R	ACCGTGGGCCCCGTGTCA
1g32530-F	CCAACATATGGAAATCGTCTTCACCGT
1g32530-R	GGTTGGATCCTCAGACGAGCCCTTTCTTG
1g09320-F	CCAACATATGACGGCCGTCACGCGGCGCCAGGCCGCTTTCCGTTTG

Table S2. Primers used for PCR and qRT-PCR in this study. All primers used were purchasedfrom Macrogen (Seoul, Korea).

1g09320-R	GGTTGGATCCGTTCAGGCGGAAAAGAACAG
2g00450-F	ACCCATATGCTGCATGAAACCGAGTGG
2g00450-R	TTGGGATCCTCAGCGGCTCGAGCG
2g17030-F	ACCCATATGTCCGCCGTGTCCGTCTTC
2g17030-R	TTGGGATCCTCATTCCATGGCGTGGCG

F- forward primer; R- reverse primer

Table S3. Results of RNA sequencing analysis of genes encoding nucleic acid-degrading enzymes and chromosomal binding HU-beta in *B. glumae*.

		Reads per kilobase per million mapped reads (RPKM)					
Gene ID ^a Gene 6 h		6 h			10 h		
		BGR1	BGS2	BGS9	BGR1	BGS2	BGS9
BGLU_1G15690	yajD	42.95645	97.42078	48.58727	41.75269	115.0284	75.58977
BGLU_1G09120	orn	216.0408	267.4828	208.2017	75.27826	236.8183	211.9989
BGLU_1G09400	rne	338.5968	400.9831	322.6752	97.6271	263.9991	262.0803
BGLU_1G13530	hupB	28.4161	559.7489	128.4933	43.33637	581.4282	287.1304

^aGene IDs were obtained from the *B. glumae* BGR1 genome database (GenBank accession numbers: CP001503–CP001508).

The RNA sequencing data were deposited in the Gene Expression Omnibus database (www.ncbi.nlm.nih.gov/geo) under accession number GSE36485.

		Homology with		
		known cation-	Effectiveness	
Gene ID ^a	Homology ^b	proton antiporter ^c	against alkaline	
		(identity/positive	toxicity ^d	
		rate)		
	Pseudomonas acidophila			
BGLU_1G32530	NhaP-type Na ⁺ /H ⁺ and K ⁺ /H ⁺	NhaP (21%/35%)	_	
	antiporter (70.27%)			
RCLU 1C00320	Pseudomonas acidophila	NhoP $(100/240/2)$		
BOL0_1009320	Na ⁺ /H ⁺ antiporter (69.91%)	1111aD(1970/3470)	_	
PCLU 2C00450	Chthoniobacterales bacterium	$N_{ho}D(100/210/)$	_	
BOLU_2000430	Na ⁺ /H ⁺ antiporter (60.74%)	Initar (19%/31%)		
	Pseudomonas acidophila			
BGLU_2G17030	NhaP-type Na ⁺ /H ⁺ and K ⁺ /H ⁺	NhaP (21%/35%)	_	
	antiporter (72.35%)			

Table S4. Homology between known cation-proton antiporter genes in other bacteria and putative Na^+/H^+ antiporter genes in *B. glumae* and effect against alkaline toxicity.

^aGene IDs were obtained from the *B. glumae* BGR1 genome database (GenBank accession numbers: CP001503–CP001508).

^bNumbers in parentheses refer to the percentage of similarity.

^cHomology with *Escherichia coli* NhaA, NhaB, and ChaA; *Vibrio cholerae* NhaC and NhaD; and *Pseudomonas aeruginosa* NhaP.

^dEffectiveness of putative Na⁺/H⁺ antiporter genes expressed under the *trc* promoter in *B*. *glumae* BGR1 against alkaline stress. The minus (–) signs denote that the expression of putative Na⁺/H⁺ antiporter genes under the *trc* promoter did not significantly affect cell viability in *B*. *glumae* BGR1 suffering from alkaline stress at pH 9.

SUPPLEMENTAL REFERENCES

- Choi, K.-H., Deshazer, D., and Schweizer, H.P. (2006). mini-Tn 7 insertion in bacteria with multiple glmS-linked att Tn 7 sites: example *Burkholderia mallei* ATCC 23344. *Nat. Protoc.* 1, 162. doi: 10.1038/nprot.2006.25
- Huynh, T.V., Dahlbeck, D., and Staskawicz, B.J. (1989). Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. *Science*. 245, 1374-1377. doi: 10.1126/science.2781284
- Jang, M.S., Goo, E., An, J.H., Kim, J., and Hwang, I. (2014). Quorum sensing controls flagellar morphogenesis in *Burkholderia glumae*. *PLoS One*. 9, e84831. doi: 10.1371/journal.pone.0084831
- Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T., and Hwang, I. (2003). Toxoflavin produced by *Burkholderia glumae* causing rice grain rot is responsible for inducing bacterial wilt in many field crops. *Plant Dis.* 87, 890-895. doi: 10.1094/PDIS.2003.87.8.890
- Keen, N.T., Tamaki, S., Kobayashi, D., and Trollinger, D. (1988). Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. *Gene.* 70, 191-197. doi: 10.1016/0378-1119(88)90117-5
- Kim, J., Heindl, J.E., and Fuqua, C. (2013). Coordination of division and development influences complex multicellular behavior in *Agrobacterium tumefaciens*. *PLoS One*. 8, e56682. doi: 10.1371/journal.pone.0056682
- Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J.E., Lim, J.Y., et al. (2007). Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in *Burkholderia glumae*. *Mol. Microbiol.* 64, 165-179. doi: 10.1111/j.1365-2958.2007.05646.x
- Kim, J., Kim, J.G., Kang, Y., Jang, J.Y., Jog, G.J., Lim, J.Y., et al. (2004). Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in *Burkholderia glumae*. *Mol. Microbiol*. 54, 921-934. doi: 10.1111/j.1365-2958.2004.04338.x
- Staskawicz, B., Dahlbeck, D., Keen, N., and Napoli, C. (1987). Molecular characterization of cloned avirulence genes from race 0 and race 1 of *Pseudomonas syringae* pv. *glycinea*. *J. Bacteriol.* 169, 5789-5794. doi: 10.1128/jb.169.12.5789-5794.1987