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1 PDBLISTS
PDB ID of protein structures used in this study are provided in the supplementary xlIsx file.

PDB files with our predicted water positions are also included as separate ZIP files.

2 BINDING SITE FILTERING METHOD

For the 413 protein structures in our test set, a proper ligand is defined to be a non-solvent molecule with
its molecular weight within the range of [200,800] Daltons. Also, to avoid ambiguity, there should not be
other ligand molecules within 4.0A of this ligand. Only the ligand with the most heavy atoms is chosen in
proteins with multiple ligands, and in cases of a tie, the one with more crystallographic water molecules is
chosen.

3 WATER PLACEMENT ALGORITHM

The pseudocode of two critical algorithmic part invoked in our algorithm is described in
and respectively, our algorithm will iteratively call AddNewWater() and GlobalAdjust() until
the AddNewWater() procedure can not discover any new water molecules.

Algorithm 3.1: Adding new waters

Input: Given protein prot

Learned Scoring Function Score(p | prot)

score threshold cutoff, a constant value choosed using validation dataset.
Output: Protein prot with additional water molecules predicted by algorithm.

1 Function AddNewWater (protein prot, threshold cutoff)

2 GP < GenerateGridPointSet (prot)

3 while True do

4 candidates < {}

5 foreach candidate point ¢ € GP do

6 Copt 4= argmin, .y (. gx) Score(p | prot)

// N(c,d) means all points within distance d of ¢

7 candidates < candidates U {copt }

8 end

Cbest < argminpecandidates Score (p | prot)

10 if Score(cpest | prot) < cutoff then

1 | prot < prot U {cpest}

12 else

13 | break

14 end
15 end
16 return prot
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Algorithm 3.2: Water adjusting algorithm based on iterative local adjustments

Input: protein prot, with some already added water molecules.
Learned Scoring Function Score(p | prot).
Score Cap cap.
// cap 1s a constant obtained from validation set for the total
score of waters.
Output: Protein prot with water molecules adjusted to optimum positions.
1 Function GetTotalScore (protein prot)

2 tot_score < Xyaterwepcap — Score(position of w | prot \ w)

3 return fot_score

4 Function LocalAdjust (protein prot, local water set W)

5 candidates +— W

6 foreach pair of points (a,b) € W do

7 candidates + candidates U (az—’b) // added midpoint
8 end

9 candidates < candidates U ‘ZT“‘/ // added gravity center

10 init < prot\ W
11 Wopt < W

12 score <— GetTotalScore (prot)

13 foreach subset W,,,,q C candidates do

14 prot.,nqa < tnit U W 4

15 apply gradient descent optimization for W ,,,4 in prot. .4
16 if GetTotalScore (prot.,, ) > score then

17 score < GetTotalScore (prot.,n4)

18 Wopt — Weand

19 end

20 end

21 return W,

22 Function GlobalAdjust (protein prot)

// global adjustment of all waters in prot
23 8 < All 2 or 3 water subset with avg pairwise dist < 4A in prot
24 while 8 is not empty do

25 Wy < argminyg g avg-min_pairwise_dist(W)

26 Wyew ¢ LocalAdijust (prot,W,,)

27 if W5 = Wi then

28 | S« 8\ {Woa}

29 else

30 P < All water subset in 8 which contains any water of W4

31 prot < prot \ W, ; U W,

32 Q «+ All 2 or 3 water subset with avg pairwise dist < 4A in prot which contains any
water of W,cw

33 S+~ 8\PUQ

34 end

35 end

36 return prot

4 IMPACT OF WATER PLACEMENT ORDER

During water placement, we use an order dependent algorithm to simultaneously solve the collision
of water molecules and model the complex water-water interactions. One natural question is how the
placement order affects the final performance. We created an alternative algorithm with no score updating
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Figure 4.1. The influence of the score update during addition. Recall rates of water molecules categorized
by: a. Number of polar atoms of the protein nearby. b. Number of water molecules nearby. U:Update score
during addition; N:No score updates in the addition process.

after every placed water molecule. To avoid duplicated water molecules, we discarded boxes that are within
2A of already placed water molecules. Experiments with no grid score updates are carried out to have a
performance comparison with our final solution (Figure 4.1).

It is illustrated that for water molecules having strong interactions with protein(e.g. having > 3 polar
atoms within 3.2A), the recall rates obtained by the no-grid-score-update approach are almost the same as
ones in our final solution. For those with fewer polar atom interactions, the recall rate decreases severely.
We also studied the influence of contact waters count, which may reflect the solvent exposure ratio of a
certain location. Experimental results showed that water molecules with fewer contact waters were also
much easier for our no-update solution to discover. Our algorithm is thus proved to be almost order-invariant
for those waters with enough evidence, and the clear deterioration of our no-update approach on waters
with fewer interactions also proved the necessity of our iterative updating strategy.

5 PARAMETRIZATION OF THE MODEL

Our scorer model was trained with an Adam optimizer with 1 = 0.9, 85 = 0.999, € = 108 and initial
learning rate equal to 0.0001 for 30 epochs, the mini-batch size was equal to 20. There is an automatic
learning rate decay that reduces the learning rate linearly after each epoch and eventually to 0.00001(10%
of initial learning rate).

The training losses of each epoch is in [Figure 5.

After inspecting the training curve, we concluded that there is no clear indication of overfitting on both
validation loss and average leave-one-out (LOQ) optimization distances. The model from epoch 26 was
chosen.

There is another important hyperparameter for our water addition algorithm, the threshold of score in
water addition. The threshold is set as 0.55 after scrutinizing prediction results of protein structures from
the training set and validation set. A larger threshold will slow down the algorithm due to the consequent
increase of water molecules that will raise the computational complexity of the adjusting procedure.

Water molecules in the data bank are resolved and determined by various softwares and labs. For the
uniformity and quality of instances used in our training process, we redid the ground truth water molecules
from density maps. Water molecules are added by iteratively finding optimal density map locations for the
addition and update the map to include the newly added water molecules.
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Figure 5.1. Training curve, measured by validation loss and mean leave-one-out (LOO) distance

6 EXPERIMENTAL DETAILS

We noticed that HydraMap’s prediction package might have some performance issue on their "holo mode
since it was producing nearly random outputs, and most of the predictions clashed with protein atoms.
Thus their "apo mode’ is used instead, with all ligand molecules merged into the receptor PDB file. Our
experiments showed that this configuration performed better, so all results of HydraMap are produced
likewise.

9

For experiments using WATsite and GAsol, we followed strictly with their online manual (https://
pharma.unibas.ch/fileadmin/user_upload/pharma/Research_groups/Computatiional_
Pharmacy/Bilder/Research/WATsite3_0_User_Guide_w_cudagl_docker_image.pdf,
last accessed on Jul. 31st, 2021 (Version Jan. 15th, 2020, [Figure 6.1))). For WATsite, ater molecules that are
within 6.0A of proteins are generated, instead of the default cutoff (3.0A), to comply with our evaluation
standards.

OppA protein structures are submitted via the GalaxyWEB server to yield predictions from the
GalaxyWater-wKGB model(http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=
WKGB).

In experiments, the definition of binding site ground truth waters are crystallographic waters within 4.0A
of the binding site (which was also used in HydraMap’s experiment), and all predictions within 5.0A of
both protein and binding ligands are included in the evaluation.
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Figure 6.1. Manual file of the WATsite and GAsol package used in our experiment, first page.
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