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Supplementary material 1: methods for burial experiment 

An experiment was carried out to investigate the ability of Calamagrostis arenaria seed to germinate 

and emerge from sand burial. Seeds were harvested in august 2013 and sown in January 2014. Seeds 

were stored dry at about 20°C except for a 3 week stratification treatment at 5°C. They were subjected 

to four (1, 3, 6 and 9 cm) burial treatments. A control where seeds were sown superficially was added. 

Each treatment was replicated 5 times and for each replicate 50 seeds were used. The seeds were 

sown evenly spaced in pvc tubes with 10 cm diameter filled with 10 cm of a sand and garden soil 

mixture. The latter was used in order to prevent rapid dehydration of the substrate. The bottom of the 

tubes was sealed with a geotextile enabling drainage of excess water. Finally, layers of mineral dune 

sand with thickness according to the treatments were added on top of the seeds. Treatments were 

watered till saturation twice a week, simultaneously with seedling counting.  

 

  



Supplementary material S2. Quantification of the Calamagrostis arenaria spatial configuration  

 

S2.1 Acquisition of the remote sensing data and indication of dune areas 

The study area covers the coastal dunes of the United kingdom, France, Belgium and the Netherlands 

(figure S2.1). A different source of remote sensing data had to be used for each country. However, we 

searched for aerial images of similar quality between countries and selected images with minimal cloud 

cover and shadow interference. The aerial images differ in origin, in resolution and in the year in which 

they were taken (table S3.1). Aerial photographs were combined to obtain the RGBI band: blue (452–

512 nm), green (533–590 nm), red (636–673 nm) and NIR (near infrared, 851– 879 nm). Digital Terrain 

Models (DTM) and Digital Surface Models (DSM), derived from LiDAR data, were obtained where 

available (Belgium and the Netherlands, table S3.1). For each country, the dune areas were mapped 

manually by visually interpreting the aerial photographs. The mapping was done with QGIS (QGIS 

Development Team 2020). Dune areas were considered up to 200m land inwards for France, the 

Netherlands and the UK. Because the vegetation maps for Belgium are used in other projects as well, 

the dune areas were mapped further landward (up to 3.8 km).  

 

Figure S2.1: The Interreg 2 Seas region. Aerial photographs were gathered for all indicated coastlines. 

  



S2.2 Classification 

Support vector machines (SVMs) are a supervised non-parametric non-statistical learning technique 

(Lucas 2020) for which no assumptions are made on the underlying data distribution. The SVM is 

trained by making use of labelled data for which the algorithm aims to separate observations into a 

number of predefined classes. This trained algorithm is then used to classify all the data into the classes 

matching the training set (Mountrakis et al. 2011). We decided to use a SVM because of its efficiency 

at generalizing despite using a small training set (Mountrakis et al. 2011). 

 

Vegetation maps are derived from the remote sensing data by classifying every pixel within the 

indicated dune areas into one of the expected vegetation types using a SVM. The expected vegetation 

types are: trees, shrubs, heath, grassland, marram grass, grey dune & sand. The used classes differed 

between the countries since some vegetation types did not occur in all countries (table S2.2). As a 

result one model was constructed per country. For each vegetation type, polygons containing pixels of 

the same type were drawn manually on different images. Half of the pixels was used as reference data 

for training while the other half was used for validation of the classification The same number of pixels 

was used per vegetation class for training of the SVM within one country, however, in order to have a 

sufficiently high accuracy of the resulting classification, the number of pixels did differ between 

countries. The SVM’s use the 4 bands described earlier (RGBI) together with the Normalized Difference 

Vegetation Index (NDVI), which can be calculated from band 3 & band 4 as NDVI = (NIR-RED) / 

(NIR+RED) (Tucker 1979; Pettorelli 2013). The height of the vegetation, calculated from the LiDAR data 

by subtracting the DTM from the DSM, was also incorporated to further optimize the classification.  

 

Apart from validation by the algorithm itself, the classified vegetation maps were also validated 

through ground truth data of specific areas that were not integrated into the training dataset. If the 

ground data showed that the model was not effective enough in classifying some vegetation types, 

extra training (via inclusion of extra pixels) of the algorithm was done to improve the outcome. 

 

In the end, all four classifications had an overall accuracy higher than 90%. However, the models for 

the UK and France had a higher accuracy and kappa than those for Belgium and the Netherlands (table 

S2.3). The confusion matrix performance on the training dataset, together with the predictor accuracy 

and the user accuracy (two measures for the ratio of correctly classified pixels to the total number of 

truth pixels; Foody 2002, Thoonen et al. 2008) can be found in table S2.4. 

 

All SVM’s were constructed using the package “e1071” (version 1.7-2, Meyer et al. 2019) in R (version 

3.6.1, R Core Team, 2019), all with a Radial kernel (gamma = 1/6, cost = 1). Since the LiDAR data had a 



lower resolution than the colour images (1m and 0.25m, respectively), we rescaled the data before 

including them in the SVM models. This rescaling was done using resampling with nearest neighbour 

in the package “raster” (version 3.4-5, Hijmans 2020).



 Table S2.1: Origin of the remote sensing data per country.  1 

Ortho-photos The United Kingdom France Belgium The Netherlands 
Source Airbus Airbus Flemish government Dutch government 

Origin Pleiades satellite Pleiades satellite Planes N° of different satellites 

Year 2016-2019 2018 2015 2018 

Link + description Website of Airbus 
https://www.airbus.com/ 
 

Website of Airbus 
 https://www.airbus.com/ 
 

Orthophoto mosaic mid-scale summer shots  
2015 Flanders  
https://download.vlaanderen.be 

Orthophoto composed with images from 
different satellites – 2018 
https://data.nlextract.nl/beeldmateriaal/2018/ 

Resolution (m) 0.5 0.5 0.4 0.25 

Raster 
dimensions (m) 

25x25 25x25 20x20 25x25 

N° of pixels per 
raster cell 

2 500 2 500 2 500 10 000 

CRS* British National Grid - 
EPSG:27700 
https://epsg.io/27700 

WGS 84 / UTM zone 31N - 
EPSG:32631 
https://epsg.io/32631  

Belge Lambert 72 - EPSG:31370 
https://epsg.io/31370 

 

RD New - EPSG:28992  
https://epsg.io/28992 

 

LIDAR 
  

Belgium The Netherlands 

Source 
  

Flemish government Rijkswaterstaat 

Year   2015 2018 

Link  DSM: https://download.vlaanderen.be/Producten/D
etail?id=937&title=Digitaal_Hoogtemodel_Vlaa
nderen_II_DSM_raster_1_m 

https://www.pdok.nl/introductie/-
/article/actueel-hoogtebestand-nederland-
ahn3- 

  DTM: https://download.vlaanderen.be/Producten/D
etail?id=939&title=Digitaal_Hoogtemodel_Vlaa
nderen_II_DTM_raster_1_m 

 

Resolution (m)   1 1 

* CRS = coordinate reference system 2 

https://www.airbus.com/
https://www.airbus.com/
https://download.vlaanderen.be/
https://data.nlextract.nl/beeldmateriaal/2018/
https://epsg.io/27700
https://epsg.io/32631
https://epsg.io/31370
https://epsg.io/28992
https://download.vlaanderen.be/Producten/Detail?id=937&title=Digitaal_Hoogtemodel_Vlaanderen_II_DSM_raster_1_m
https://download.vlaanderen.be/Producten/Detail?id=937&title=Digitaal_Hoogtemodel_Vlaanderen_II_DSM_raster_1_m
https://download.vlaanderen.be/Producten/Detail?id=937&title=Digitaal_Hoogtemodel_Vlaanderen_II_DSM_raster_1_m
https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn3-
https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn3-
https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn3-
https://download.vlaanderen.be/Producten/Detail?id=939&title=Digitaal_Hoogtemodel_Vlaanderen_II_DTM_raster_1_m
https://download.vlaanderen.be/Producten/Detail?id=939&title=Digitaal_Hoogtemodel_Vlaanderen_II_DTM_raster_1_m
https://download.vlaanderen.be/Producten/Detail?id=939&title=Digitaal_Hoogtemodel_Vlaanderen_II_DTM_raster_1_m


Table S2.2: Predefined vegetation types for the SVM, for each country. 

 Trees Shrubs Heathland Grassland Marram Grey 

dunes 

Bare sand 

UK X  X X X X X 

FR X X  X X  X 

BE X X  X X X X 

NL X X X X X X X 

  

Table S2.3: Overview of the performance parameters of the SVM, per country. 

Country Accuracy 95%-CI Kappa 

UK 0.9871 0.9856, 0.9885 0.9846 

FR 0.9842      0.9826, 0.9857 0.9803 

BE 0.9283 0.9241, 0.9324 0.914 

NL 0.9314 0.9284, 0.9344 0.92 

 

Tables S2.4: The confusion matrix performance on the training dataset. 

UK 

 

 trees heath marram moss sand grassland UA 

trees 3830    0 0 1 0 37 0,990176 

heath 0 3988 1 0 0 0 0,999749 

marram 0 10 3993 0 0 21 0,992296 

moss 96 0 0 3993 0 55 0,963562 

sand 0 0 0 0 4000 0 1 

shrubs 74 2 6 6 0 3887 0,977862 

PA 0,9575 0,9970 0,9983 0,9983 1 0,9718  

 

FR  shrubs trees marram sand grassland UA 

shrubs 4880 126 0 0 0 0,974830 

trees 120 4870 0 0 0 0,975952 

marram 0 4 4933 0 77 0,983845 

sand 0 0 0 5000 0 1 

grassland 0 0 67 0 4923 0,986573 

PA 0,9760 0,9740 0,9866 1 0,9846  

 

BE 

 

 shrubs trees marram moss sand grassland UA 

shrubs  2031 98 0 7 0 126 0,897878 

trees 29 2269 0 0 0 0 0,987380 

grassland 400 36 0 76 0 2366 0,822099 



marram 17 5 2430 88 0 0 0,956693 

moss 23 92 70 2329 0 8 0,923473 

sand 0 0 0 0 2500 0 1 

PA 0,8124 0,9076 0,9720 0,9316 1 0,9464  

 

NL 

 

 shrubs trees heath marram moss sand grass UA 

shrubs 3751 22 0 103 103 4 22 0,938924 

trees 10 3977 0 0 0 0 1 0,997242 

grass 46 1 0 2 31 0 3724 0,97897 

heath 1 0 3992 0 0 0 0 0,99975 

marram 140 0 7 3183 321 19 174 0,828044 

moss 7 0 1 503 3477 1 83 0,85388 

sand 45 0 0 209 68 3976 6 0,923792 

PA 0,9378 0,9943 0,9980 0,7958 0,8693 0,9940 0,9310  

 

  



S2.3 Quantifying spatial configuration of marram grass 

To represent the spatial configuration of marram grass in the study region, two parameters were 

calculated which are based on an underlying grid. Since the resolution of the aerial photographs 

differed, four rasters (one per country) were generated with varying grid cells and thus also a varying 

number of pixels contained within one grid cell (see table S2.1). The corners of the grid cells were 

chosen as integer numbers within the local Cartesian reference system. 

 

To two calculated landscape metrics were the proportion of marram grass in the area (P) and the 

spatial autocorrelation or aggregation of marram grass patches in the area (JCS, join-count statistics; 

see below). The proportion of marram grass in the area was calculated as the ratio between the 

number of pixels defined as marram grass (A) and the total number of pixels in the raster cell/circle 

(T). 

P = A/T 

The spatial autocorrelation or aggregation was determined based on the join-count statistic (Kabos & 

Csillag, 2002). This statistic is used with binomial data (such as 1/0 or in this case marram grass/no 

marram grass) to quantitatively determine the degree of clustering or dispersion of patches. It 

calculates the sum of joins, thus the number of boundaries of paired raster cells (e.g. pixels) . The 

possible joins that can occur are: 1-1 , 1-0 and 0-0 joins. For the spatial autocorrelation of marram 

grass, only the sum of the 1-1 joins is of interest and is calculated as:  

𝑀𝑀=(1/2) ∗ ΣiΣj (𝑤𝑖𝑗 ∗ 𝑥𝑖 ∗ 𝑥𝑗) 

Here 𝑥 is 1 or 0 when the raster cell is respectively marram grass or not. 𝑤𝑖𝑗 is the spatial weight and 

is 1 when cell i and j share a common boundary and 0 otherwise. The z-score is used as a measure for 

the spatial aggregation of marram grass and is calculated as: 

𝑍 = (𝑀𝑀𝑂𝑏𝑒𝑟𝑣𝑒𝑑 − 𝑀𝑀𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑) / 𝜎𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

where the observed sum of 1-1 joins is compared to the expected sum of joins when patches are 

randomly distributed. Positive z-values correspond to a positive spatial correlation with marram grass 

patches occurring clustered. Z-values close to 0 correspond to a random distribution of the marram 

grass patches. Negative z-values correspond to a negative spatial correlation with marram grass 

patches occurring more regularly distributed than random (Fortin & Dale, 2009). 

 

Both landscape metrics were calculated using R (version 3.6.1, R Core Team 2019). The proportion of 

marram grass present is calculated using package SDMTools (version 1.1-221.1, VanDerWal 2018). The 

JCS is calculated by the spdep package (version 1.1-3, Bivand et al. 2018).  

 



The spatial distribution of marram grass in the studied region has been integrated in the following tool: 

http://www.vliz.be/projects/endure-viewer/. The geographic representation of these statistics is only 

based on true foredune plots, consisting of sand-marram cover, so omitting already fixed dunes, or 

those foredunes colonised by (invasive) shrubs. 
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Supplementary material 3: a detailed overview of the simulation model 

 

Table S3.1: overview of implemented parameters. 

Parameter Definition Unit 
Default 
value 

h Local vegetation height m   

lsat Saturation length m   

q Sand flux kg/m/s   

qs Saturated sand flux kg/m/s   

u* Shear velocity m/s   

ρveg Local vegetation density %   

τs Surface shear stress Pa   

        

a Sprouting effect - 5 

C 
Empirical constant to account for 
the grain size distribution width 

- 1.8 

dn Nominal grain size µm 335 

Dn Reference grain size µm 250 

dsand Bulk density of sand kg/m2 1500 

g Gravitational constant m/s2 9.81 

H Maximum vegetation height m 0.9 m 

s Side length of one cell m 0.2 

u*th Shear velocity threshold m/s 3.87 * α 

uz Wind speed at height z m/s 6.41 

z 
Height above the bed at which the 
wind speed is measured 

m 10 

α 
Conversion factor from free-wind 
velocity to shear-wind velocity 

- 0.058 

ρa Air density kg/ m3 1.25 

Г Roughness factor of vegetation - 16 

 

Spatial and temporal dimensions 

The landscape represents a square grid with each cell having a dimension of 0.20 x 0.20 m². One time 

step corresponds to one day. 

Sand dynamics 

1. Wind direction and boundary conditions 

 



Four different wind directions are defined in the model, each corresponding to a side of the landscape. 

The distribution of wind direction is assigned at the start of a simulation. Per time step, the wind 

direction is randomly drawn, based on this distribution. The amount of sand, blown into the system 

from the sea (N), is expressed as a relative percentage of qs. For instance, if sand influx is defined as 

0.5. Then, q equals 0.5 qs when wind blows from the direction of the sea. Southern winds (land) have 

an influx of 0 kg sand per cell. Lateral winds have an influx that corresponds with the most recent 

outflux of a lateral wind, so simulating equal incoming and outcoming lateral fluxes. This amount is 

constantly updated during a simulation. Wind speed is drawn daily from a normal distribution, based 

on average wind speed and its standard deviation of that month. 

 

2. Determine shear velocity based on wind velocity (Hoonhout, 2016):  

 

𝑢∗ =  𝛼 𝑢𝑧   (eq. 1) 

 

3. Determine maximum (unperturbed) shear stress based on formula for a flatbed (Durán et 

al., 2010). 

𝜏∗ =  𝑢∗
2 ∗  𝜌𝑎   (eq. 2) 

 

4. Calculate fraction of shear stress acting on the sand, based on density of local vegetation 

(Duran and Moore, 2013) 

 𝜏𝑠 =  
𝜏∗

1+ Г 𝜌𝑣𝑒𝑔
   (eq. 

3)  

5. Including Venturi effect: per row of cells occupied by marram grass, perpendicular to the 

wind direction, the total amount of wind shear stress reduction by the vegetation is 

calculated. A fraction (25%) of this total amount is then added to the wind shear stress of 

the two adjacent cells of this row.  

 

6. Recalculate local wind shear velocity based on the formula for an unperturbed shear 

velocity on a flatbed (Durán et al., 2010): 

 

𝑢∗ =  √
𝜏𝑠

𝜌𝑎
  (eq. 4) 



7. Define saturated sand flux per location based on the Bagnold formula (Bagnold, 1937; 

Hoonhout, 2016) 

 

𝑞𝑠 = 𝐶 
𝜌𝑎

𝑔
 √

𝑑𝑛

𝐷𝑛
 (𝑢∗ − 𝑢∗𝑡)3  (eq. 5) 

8. Erosion is modelled based on the following formula (Kroy et al., 2002): 

 

∆𝑞𝑒𝑟𝑜𝑠𝑖𝑜𝑛 =  
1

𝑙𝑠𝑎𝑡
 𝑞 (1 − 

𝑞

𝑞𝑠
)  (eq. 6) 

 

In this formula, 𝑙𝑠𝑎𝑡  is assumed to decrease with wind shear according to: 

 

𝑙𝑠𝑎𝑡 =  
5

𝑢∗
  (eq. 7) 

The maximum amount of sand that can be eroded, is the amount of sand present in a cell. 

 

9. Deposition is modelled according to: 

 

∆𝑞𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0.5 ∗ (𝑞 − 𝑞𝑠)  (eq. 8) 

 

 

10. Gravity 

 

Maximum angle of repose is 34° (Durán et al., 2010). Each time step, avalanches are simulated in case 

this angle is exceeded. Then, the excess amount of sand is displaced to one of the neighbouring cells 

in the direction with the steepest slope. The maximum angle of repose is set to 34° when vegetation 

is absent (Durán et al., 2010), but increases with vegetation density. As such, avalanches are less 

prevalent when plant density is high. 

 

11. Shelter effects 

Based on vegetation height and sand availability, average slopes (along the wind direction) are 

determined within the landscapes. In case a lee slope is steeper than 14° (Kroy et al., 2002), a new 

imaginary slope of 14° is drawn. The area which is covered by this new slope is sheltered. Within this 

sheltered area, no erosion is allowed.  

 



Although not used in these simulations, the provided codes allows for: 

 

12. A storm event to occur in the middle of a simulation. A cliff erosion simulation can be included 

with marram grass and sand destroyed in the first 5 m of the landscape, closest to the sea. 

 

13. Rain events to occur with a chance of 20% (prediction of climate change) from the middle of a 

simulation onwards. 

 

 

Marram grass dynamics 

 

Seasonality in marram grass: 

 

1. Local growth 

Marram grass is only able to grow from April to August (for 153 days), according to:  

∆𝜌𝑣𝑒𝑔 =  𝜌𝑣𝑒𝑔  𝑟 (1 − 
𝜌𝑣𝑒𝑔

100
)  (eq. 9) 

Spring and summer 
(growth of biomass which 
is present above the sand)

-Growth is depending on 
daily sand deposition

-Negative growth in case of 
too much sand or too few 
sand deposition during 10 

consecutive days

First day of autumn: 

Save total density of 
marram grass per location

Autumn and winter-

Submerging: Update height 
and density per cell

Trace total amount of sand 
netto deposited during 

winter

First day of spring: large 
sprout event based on 
netto amount of sand 

deposited during autumn 
and winter and marram 

density at the start of 
autumn



r represents the growth speed of marram grass and depends on the netto amount of sand deposited 

or removed (by wind and avalanches) during one time step (∆𝑞𝑛𝑒𝑡𝑡𝑜) (based on (Nolet et al., 2018). In 

case no netto deposition of sand occurred, growth speed depends on the number of consecutive days 

without sand deposition (𝑡𝑛𝑜 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) or too much sand deposition (𝑡𝑡𝑜𝑜 𝑚𝑢𝑐ℎ 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). To add 

randomness to the model, an extra value, drawn from a normal distribution with mean 0 and standard 

deviation 0.01, is added to r per cell per time step. 

 

𝑟 = {
−462.08 (∆𝑞𝑛𝑒𝑡𝑡𝑜 −  

0.5

152
)

2

+ 0.005 if ∆𝑞𝑛𝑒𝑡𝑡𝑜  > 0 

−0.05 if 𝑡𝑛𝑜 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 > 10

−0.05 if 𝑡𝑡𝑜𝑜 𝑚𝑢𝑐ℎ 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 > 10

} + 𝑁(0, 0.0012)   (eq. 

10) 

2. Lateral growth 

During the growth season, marram grass can also grow laterally. The chance of lateral growth (𝛾) 

depends on ∆𝑞𝑛𝑒𝑡𝑡𝑜 according to Nolet et al. (2018): 

𝛾 =  −14440 (∆𝑞𝑛𝑒𝑡𝑡𝑜  −
0.4

152
)

2

+ 0.1 + 𝑁(0, 0052) (eq. 11) 

In case lateral growth is successful, one of the eight neighbouring cells is randomly selected as the 

direction of lateral growth. If marram density in that cell is below 90%, the percentage of marram grass 

is increased by 1. To add randomness to the model, an extra value, drawn from a normal distribution 

with mean 0 and standard deviation 0.05, is added to 𝛾 per cell per time step. 

 

3. Burial from September to March 

 

The height of the vegetation in a cell is estimated by (Van Westen, 2018): 

ℎ1 =  √𝜌𝑣𝑒𝑔
 
 𝐻  (eq. 12). 

 

 

During winter and autumn, vegetation height per cell is updated daily based on the amount of sand 

deposited or eroded (∆𝑞𝑛𝑒𝑡𝑡𝑜). 

  

ℎ2 = ℎ1 −
∆𝑞𝑛𝑒𝑡𝑡𝑜

𝑑𝑠𝑎𝑛𝑑 𝑠2⁄
  (eq. 13). 

 



Afterwards, local vegetation cover is estimated based on ℎ2  by (Van Westen, 2018):   

    

𝜌𝑣𝑒𝑔 =  (
ℎ2

𝐻
)2  (eq. 14).

  

 

4. Sprouting event at the start of spring: 

The local density of marram grass after sprouting event is determined by the following equation: 

 

𝜌𝑣𝑒𝑔,𝑠𝑝𝑟𝑜𝑢𝑡 =  𝜌𝑣𝑒𝑔  (1 − ∆ℎ𝑤𝑖𝑛𝑡𝑒𝑟) ∙ 𝑎    (eq. 15). 

 

With ∆ℎ representing netto change in sand height during autumn and winter. Moreover, in case 

more than 1 m of sand was locally deposited, marram density becomes 0. In case ∆ℎ is negative, 

marram density is unchanged. a determines the strength of the sprouting effect and was set to five 

based on field observations.  

 

 

The code is available on Github: https://github.com/dbonte/EndureModel.git. This code also 

includes extra functions, not used here and neither optimized, with regard to erosion dynamics after 

a simulated storm and germination of marram under wet spring conditions. 
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Supplementary material 4: Observed changes in dune topography in relation to marram grass 

spatial organisation. 

 

The analysis of the evolution of the coastal dunes is based on available high-resolution topographic 

and morphological data obtained from airborne LiDAR surveys (Strypsteen et al., 2019b) with densities 

of at least 1 point per m² carried out at annual intervals between 2015 and 2019. In order to scale the 

maps to those of the maps containing the characteristics of measured vegetation data, each LiDAR 

survey is converted using linear interpolation into the same grids with a 20x20 m² cell resolution. From 

these gridded LiDAR surveys elevation differences (Δheight) are calculated between the years 2015 

and 2019, as well as the coefficient of variation (CV) of these differences within each grid cell. The 

latter thus represents changes in local topography. A subset of the data was taken to fit a linear 

statistical model: 14 km of coast from the French-Belgian border (De Panne) to the estuary of the Yser 

(Nieuwpoort). This part of the Belgian coast has the largest dune areas and a minimum of expected 

disturbance from recreation and beach-cleaning. 

To relate Δheight and CV of the height of the dunes to the cover (P) and aggregation of marram grass 

(join count, JC) (see supplement S2), linear models were fitted to the data. A general linear model with 

a Gaussian distribution was fitted for Δheight and a gamma distribution with log-link function for the 

CV. The model was fitted in R v3.5.1 (R Core Team, 2020) using INLA, a Bayesian approach that allows 

to adjust for spatial autocorrelation while estimating the effect sizes (Rue et al. 2009, Lindgren and 

Rue 2011, Martins et al. 2013). Fixed effects were the same for the two types of models: linear terms, 

quadratic terms and interaction terms (excluding the interactions of both quadratic terms) of cover (P) 

and aggregation (JC), one linear term for distance to high water mark (Dist) and one linear term for 

mean sand suppletion (meandV). The latter are needed to control for regional differences in sand input 

and or landward ceasing sand fluxes as known sources of potential autocorrelation. Such a control is 

needed to allow comparison with the simulation model in which processes of sand fluxes are 

standardised across replicates (simulations thus represent sites directly connected to the beach, 

experiencing the same sand input). All covariates were standardized before analysis. Priors for the 

spatial effect, which determine the smoothness of the spatial field, were manually optimized to 

prevent overfitting (Beguin et al. 2012). This was done because a too flexible spatial effect can adjust 

for all residual variation which results in a perfectly fitting model with meaningless fixed effects. 

Predictions were made for combinations of the realised cover and autocorrelation conditions (see 

main text Fig. 3) 



Similar statistical models were fitted to the output of the simulations from the simulation model (see 

main manuscript and supplement 3). Response variables here are volume (comparable to Δheight 

above) and coefficient of variation (CV) of volume. Only cover (P) and aggregation (JC) are used as 

covariates and no spatial effect was added. 

Effect sizes for both the IBM data and LiDAR data are visualised in Fig. S4.1. Spatial fields are plotted 

in Fig. S4.2, which show the amount of variation that is explained by the spatial effect for different 

locations, or the extend of the adjustment for spatial correlation at different locations. 

Variograms of the residuals for the LiDAR data are shown in Fig. S4.3. Here, the flatter the curve, the 

less spatial autocorrelation remains after model fitting.  

R-script for the statistical models can be found on Github: 

https://github.com/FemkeBatsleer/DuneTopoMarram  

 

 

  



Fig S4.1: Effect sizes of the standardized covariates for the simulations of the IBM model (upper 

panels) and the LiDAR data (bottom panels. Error bars are credible intervals obtained from posterior 

estimations with INLA (95% CI: 2.5% quantile and 97.5% quantile). Response variables are Δheight 

(left panels) and coefficient of variance (CV) of the height differences (right panels). Covariates for 

both IBM and LiDAR data are cover of marram (P), clustering of marram (join count, JC). The 

statistical model for the LiDAR data had two extra variables of possible concern in the field study 

system: distance to the high water mark (Dist) and the average of sand suppletion between the two 

focal years (meandV). Note the higher effect sizes for the volume (IBM data) because the response is 

a volume (m³) and not standardized. 

 



 

 

 

Fig 4.2: spatial field for the LiDAR data models of Δheight (top) and CV (bottom). This shows spatially 

how much variance, on top of the fixed effects, is explained by the spatial effect (w.pm). Or in other 

words, how much the model is adjusted for spatial autocorrelation at those locations.  



 

 

Fig S4.3: Semi-variogram of residuals for non-spatial model (red) and spatial model (blue) for Δheight  

(left) and CV (right). 
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