Supplementary table 1: Summary of human and rodent studies on gut microbiome and obesity.

		~		Additional information (e.g.
		Cognitive		age; obesity indices;
Study	Population/Sample	tests	Results	observation time/FU)
Rodent stu	dies			
Arnolduss				Mice 3 mo or 6 mo old at
en et al.,	Male LDL-/- mice, HFD or	Morris water	HFD with butyrate in mid adult mice: \downarrow body weight; \downarrow adiposity	start, dietary treatment for 3
2017	HFD with butyrate.	maze	\downarrow CBF; \downarrow functional connectivity; \downarrow neuroinflammation.	or 6 mo.
	Male C57BL/6 mice, HFD			
Ashrafian	or normal diet with			
et al.,	Akkermansia municiphila		Akkermansia municiphila and EVs in HFD mice: \downarrow body weight gain;	Chow or HFD for 12 wk,
2019	or its EVs.	None	\downarrow gut permeability; \downarrow gut inflammation.	afterwards treatment for 5 wk.
			Microbiota transplants: no effect on <i>Firmicutes/Bacteriodetes</i> ratio	
	ob/ob and C57Bl/6j control		Obese microbiota transplants to control: $\downarrow Akkermansia$; \uparrow	Mice 10 wk old at start diet, 8
Battson et	mice, purified maintenance		<i>Bacteroidetes</i> ; ↑ arterial stiffness.	wk of diet before
al., 2019	diet ad libitum.	None	Control microbiota transplants to obese: \uparrow SCFA levels.	transplantation.
		Elevated	Mice given HFD microbiota: ↓ time in centre/open field; ↑ marble	
		plus maze,	burying; \downarrow learned freezing; \downarrow <i>Akkermansia</i> ; \uparrow <i>Bilophila</i> ; \downarrow occludin in	Recipient mice 3mo old,
Bruce-	C57BL/6 mice, donor mice	open field,	jejunum; ↑ occludin in colon; ↑intestinal inflammation and	donor mice 8 wk old start
Keller et	normal chow diet or HFD,	marble	permeability;	diet, 10 wk of diet before
al., 2015	recipients mice chow diet.	burying	\uparrow Iba-1 and TLR4 in macrophages; \downarrow ZO-1 and claudin-5 expression.	transplantation.
			Db/db mice: \downarrow tight junction ultrastructure, \downarrow ZO-1 and occludin	
			expression; \ NLRC3 mRNA and protein.	
			Db/db mice + butyrate: ↑ NRLC3 expression and tight junction	
			ultrastructure.	
			NRLC3 cell lines: \uparrow ZO-1 and occludin expression.	
			NRLC3 silencing in cell lines: \downarrow ZO-1 and occludin expression.	
			NRLC3 overexpression + LPS: \downarrow ZO-1 and occluding.	
Cheng et	Db/db mice and C57BL/6J		Caco-2 and NMC-460 cell lines + butyrate: \uparrow ZO-1, occludin and	8 wk old mice at start, 3 wk of
al., 2018	mice.	None	NLRC3.	sodium butyrate.
De la			12 week HFD: \uparrow inflammation and neutrophil infiltration; \uparrow TLR4	Ĭ
Serre et	Male Sprague-Dawley rats,		immunoreactivity in ileal mucosa; \uparrow plasma LPS in DIO-prone rats vs	
al., 2010	LFD or HFD.	None	DIO-R and LFD	8 or 12 wk of diet.
Duparc et	C57BL6/J WT and db/db		Db/db mice vs control: 1 basal NO frequency: no increased NO	
al., 2011	male mice.	None	release in hypothalamus after enteric glucose sensor stimulation \rightarrow	13 to 15 wk old mice.

			disturbed gut brain axis: \uparrow iNOS; \uparrow IL-1 β mRNA in intestines; \uparrow ER	
			stress markers; \uparrow IL-1 β ; \uparrow TNF- α in hypothalamus.	
	Male C57BL/6 mice, chow			
Everard	or HFD with viable		HFD + Akkermansia vs HFD: \downarrow metabolic endotoxemia; \downarrow adiposity;	
et al.,	Akkermansia or heat-killed		\downarrow CD11c; \downarrow body weight and fat mass %; \downarrow hyperglycemia.	10 wk old mice at start, 4 wk
2013	Akkermansia.	None	Heat-killed Akkermansia did not have this effect.	of treatment.
Hamilton			HFD vs chow: \uparrow permeability in small and large intestines; \downarrow IL-10	
et al.,	Male Wistar rats, chow or		expression after 1 wk; \uparrow IL1- β expression after 6 wk; \uparrow ZO-1 after 3	9-10 wk old rats at start, 1,3
2015	HFD.	None	wk; \downarrow microbiota diversity.	or 6 wk of HFD.
			HFD vs control: \uparrow amyloid A3; \downarrow adiponectin; no difference in IL-1 β ,	
			IL-10, MCP-1, TNF- α , IL-6, PAI-1; \downarrow ZO-1 in gut; no difference in	
			occludin in gut; \uparrow TNF- α expression; no difference in IL-6 expression;	
			\uparrow Firmicutes; \downarrow Bacteroidetes; \uparrow Firmicutes/Bacteroidetes ratio; \downarrow	
			<i>Lactobacillus</i> ; \uparrow <i>Oscillibacter</i> \rightarrow associated with \downarrow ZO-1 expression;	
Lam et	C57BL/6 female mice,		\rightarrow associated with weight gain; \uparrow macrophage infiltration; \uparrow TNF- α	16 wk old at start, diet for 8-
al., 2012	chow or HFD.	None	and IL-6 expression and \uparrow adipocyte size in mesenteric fat.	12 wk.
			HFD + saturated fats and HFD + n-6 PUFAs: \uparrow body weight; \uparrow fat	
	C57BL/6 female mice		mass.	
	chow or HFD with		HFD + saturated fats: \uparrow gut permeability.	
	saturated fats, HFD with n-		HFD + n-3 PUFAs: \downarrow gut permeability.	
Lam et	3 PUFAs, or HFD with n-6		HFD + saturated fats: \uparrow fat tissue infiltration of neutrophils; \uparrow CD11	6 wk old mice at start, diet for
al., 2015	PUFAs.	None	mono and macrophages; \uparrow total macrophages.	8 wk.
	C57BL/6 male mice and		HFD + butyrate or HFD + propionate: blocked weight gain	
Lin et al.,	Ffar3-/- male mice, chow		HFD + acetate: \uparrow body weight	
2012	or HFD.	None	HFD + butyrate: \downarrow food intake	3 mo old mice; diet for 4 wk.
			LPS vs control: \uparrow IL-1 β expression.	
			Sodium butyrate vs control: \downarrow IL-1 β expression.	
			LPS vs control: \uparrow TNF- α expression in microglia of aged + adult	
			mice; \uparrow IL-6 expression in microglia of aged mice; \uparrow IL-1 β expression	
	Balb/c male adult and aged		in hippocampus of aged + adult mice.	
	mice. Part 1: control mice		Sodium butyrate + LPS vs LPS: \downarrow IL-1 β expression.	
	or injection with LPS or		LPS vs control: \uparrow TNF- α and IL-6 expression in adult and aged mice.	
	sodium butyrate.		Aged vs adult mice: difference in microbiota composition; \downarrow	
Matt et	Part 2: low vs high fiber		$Mucuspirillum; \downarrow Odoribacter; \uparrow Ruminococcus; \uparrow Coprococcus; \uparrow$	3-6 mo old mice or 22-25 mo
al., 2018	diet.	None	Rikenellaceae.	old mice, diet for 4 wk.

			High fiber diet vs low fiber: \downarrow <i>Ruminococcus</i> : \downarrow <i>Rikenellaceae</i> :	
			\uparrow cecal acetate: \uparrow butvrate: \uparrow total SCFAs: \downarrow inflammatory infiltration	
			in out: \downarrow II -1B II -1RN II -6 NI RP3 TI R-4 and TNF- α expression	
			in periphery/microglia	
			II $_{16}$ TNF- $_{\alpha}$ and II $_{6}$ expression in microglia were inversely	
			associated with cecal butyrate acetate and total SCFA levels	
Ou et al	APP/PS1 and WT mice	Open field	HED + $Akkermansia$ vs HED alone: \uparrow intestinal barrier function: no	
2020	chow or HFD	and Y-maze	decrease in AB in brain: no differences in cognition	3 mo old mice diet for 6 wk
2020			ob/ob mice vs lean WT: \uparrow body weight: \uparrow insulin resistance: no	S no old mice, diet for o wk.
			differences in gut nonotrability in joiunum and iloum: \uparrow gut	
	ab/ab WT and		anterences in gut penetrability in jejunum and neum, + gut	
Sahraadar	betere		Ob/ob miss schoused with less miss (where some misrobiots may be	
Schroeder	C57DL (Cluming, formale		Ob/ob finice concused with lean finice (where some finic obloca final be	
et al.,	C5/BL/6J mice, female	NT	carried over) repaired some mucus thickness and microbiota. This was	
2020	NOD mice, chow diet.	None	not seen in non-obese diabetic mice.	3-4 mo old mice.
	Db/db and C57BL/6J male			
	mice, chow and HFD.		Effect huturate in dh/dh mice: UhAle: inflammatory outokines:	
	3 groups: control, with		Effect butyfate in ub/ub fince. \checkmark fibAft, \checkmark inflaminatory cytokines, \checkmark	
	sodium butyrate or		LPS; \downarrow inflammatory cell inflitration; \mid gut integrity; \mid intercellular	
	metformin.		adhesion molecules; \checkmark Firmicutes/Bacteroidetes ratio.	
	Cell-culture model of colon		Effect of butyrate in a cell-culture model: \uparrow cell proliferation; \downarrow	
Xu et al.,	treated with LPS and		inflammatory cytokines' secretion; \uparrow cell anti-oxidative stress ability;	7 wk old mice at start; 5
2018	butyrate or metformin.	None	preserved epithelial monocellular integrity (damaged by LPS).	weeks of treatment
			After HFD DIO showed: \uparrow <i>Firmicutes;</i> \uparrow <i>Antionobacteria</i> ; \downarrow	
	C57BL/6J male mice,		<i>Bacteroides</i> ; \downarrow <i>Proteobacteria</i> ; \downarrow tight junction proteins; \uparrow LPS; \uparrow	
	standard chow or HFD with	Y maze and	inflammation in colon and liver; \downarrow recognition and spatial memory.	
Zhang et	palmitic acid, divided in	novel object	DIO vs DR mice: \downarrow hippocampal BDNF.	6 wk old mice at start; diet for
al., 2019	DIO and DR mice.	recognition	\downarrow memory associated with \downarrow <i>Bacteroidetes</i> .	22 wk.
Human stu	Idies			
	55 obese and overweight		Differences between 3 clusters of diet (cluster 1 considered least	
	subjects and 17 healthy		healthy, 3 healthiest): no difference in body weight or adiposity or	
	women, divided into cluster		total energy intake.	
	according to diet (cluster 1		Obese subjects in cluster 3 (more fruits and vegetables) vs lean	
	highest consumption of		subjects: \downarrow circulating MCP-1; similar IL-6 levels.	
	carbohydrates, sugar,		Cluster 3 vs cluster 1+2: \downarrow sCD14; no difference in other	
Kong et	lowest consumption of		inflammatory markers; shift towards M2 macrophages; highest	Aged 25-65 yr; BMI, fat
al., 2014	fruits, yogurt and water;	None	microbiota diversity and gene richness.	mass, WC, cross-sectional.

	cluster 3 the other way		Within cluster 3: positive association between diet and CD163 in AT	
	around; cluster 2 in		macrophages; inverse association between diet and total fat mass,	
	between cluster 1 and 3).		adipocyte size, LDL and sCD14.	
			Obese vs lean women: \downarrow <i>Clostridia/Bacteroidetes</i> .	
	Colon biopsies of 16		Stimulating biopsies with stressor (C48/80) vs no stressor: \uparrow colon	
	healthy adults, some		permeability. Pre-treatment with butyrate did not affect this.	
Tabat et	biopsies treated with		Stimulating biopsies with stressor + sodium butyrate vs no sodium	Aged 18-65 yr; colon
al., 2020	sodium butyrate.	None	butyrate: \downarrow claudin-1.	biopsies.
	, i i i i i i i i i i i i i i i i i i i		Microbiome composition clusters in 2: obese and nonobese subjects.	• • • • • • • • • • • • • • • • • • •
			Obese vs nonobese cluster: \downarrow bacterial diversity; \downarrow	
			Bacteroidetes/Firmicutes ratio: ↑ Proteobacteria: no intestinal	
			permeability difference; fecal calprotectin only detectable in obese	
Verdam			cluster; ↑ plasma CRP.	
et al.,	28 obese and healthy		Plasma CRP showed positive correlation with	Aged 19-54 yr; BMI; cross-
2013	weight subjects.	None	Bacteroidetes/Firmicutes ratio.	sectional.
Combined	studies			
	C57BL/6J male mice,			
	chow, HFD or			
	live/pasteurized A.			
	Muciniphila.			
	Subjects with		HFD + live Akkermansia vs HFD: \downarrow body weight; \downarrow fat mass.	
	overweight/obesity and		Pasteurized Akkermansia vs live Akkermansia: stronger effects.	
	metabolic syndrome,		HFD + Akkermansia vs HFD: \downarrow LPS in gut.	10-11 wk old mice, treatment
Plovier et	placebo or live/pasteurized		Obese and overweight humans + Akkermansia: no effect on	for 4 or 5 wk.
al., 2017	A. muciniphila.	None	inflammation.	20 humans treatment for 3mo.

FU: follow-up; LDL: low-density lipoprotein; HFD: high fat diet; CBF: cerebral blood flow; mo: month(s); EVs: extracellular vesicles; wk: week(s); SCFA: short-chain fatty acid; Iba-1: ionized calcium binding adaptor molecule-1; TLR4: Toll-like receptor 4; ZO-1: zonula occludens-1; NLRC3: nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3; LFD: low fat diet; LPS: lipopolysaccharide; DIO: diet-induced obesity; WT: wild-type; NO: nitric oxide; iNOS: inducible nitric oxide synthase; IL-1β: interleukin 1β; ER: endoplasmic reticulum; TNF-α: tumor necrosis factor α; IL-10: interleukin 10; MCP-1: monocyte chemotactic protein-1; PAI: plasminogen activator inhibitor; n-6 PUFAs: omega-6 polyunsaturated fatty acids; n-3 PUFAs: omega-3 polyunsaturated fatty acids; IL-1RN: interleukin 1 receptor antagonist gene; NLRP3: NLR family pyrin domain containing 3; Aβ: amyloid beta; HbA1c: hemoglobin A1c; BDNF: brain-derived neurotrophic factor; DR: diet resistant; AT: adipose tissue; yr: year(s); WC: waist circumference; CRP: c-reactive protein; BMI: body mass index.