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1.1 Autoencoder 

Autoencoder (Wang et al. 2014) is a class of neural network that can compress high-
dimensional state into low-dimensional form by encoder 𝜒𝜒𝑒𝑒  and restore low-
dimensional state to high-dimensional form by decoder 𝜒𝜒𝑑𝑑. 

Here, Eq. 1 shows how to map the high-dimensional inputting state 𝑭𝑭𝒕𝒕  onto 
reconstructed high-dimensional state 𝑭𝑭�𝒕𝒕, 

𝑭𝑭�𝒕𝒕 = 𝜒𝜒𝑑𝑑 ∘ 𝜒𝜒𝑒𝑒(𝑭𝑭𝒕𝒕) (1) 

where ∘ is the function composition operation. 

Previously, Lusch et al. (Lusch, Kutz and Brunton 2018) build a deep auto-encoder 
framework to accurately predict the future state of metabolomics time series with flow 
behavior, which demonstrates that autoencoder is good at processing nonlinear systems.  

1.2 Delay embedding theory 

For a high dimensional nonlinear system with 𝑛𝑛-dimensional variables, we define 
𝑭𝑭𝒕𝒕 = (𝑓𝑓1𝑡𝑡,𝑓𝑓2𝑡𝑡, … , 𝑓𝑓𝑛𝑛𝑡𝑡)′ as the observed non-delay attractor, which represents the state of 
the system at time step 𝑡𝑡 in the 𝑛𝑛-dimensional space. Here “'” is the transpose of a 
vector. The delay embedding theory (Sauer, Yorke and Casdagli 1991, Holmes et al. 
2012) suggests that, the mapping 𝛷𝛷:ℝ𝑛𝑛 → ℝ𝐿𝐿 to the observed non-delay attractor 𝑭𝑭𝒕𝒕 
is an embedding when 𝐿𝐿 > 2𝑑𝑑 (𝑑𝑑 denotes the box-counting dimension of 𝑭𝑭𝒕𝒕), and a 
delay attractor 𝒀𝒀𝒕𝒕 = (𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡+1, . . . , 𝑦𝑦𝑡𝑡+𝐿𝐿−1)′ of length 𝐿𝐿 can be constructed by Eq. 2. 

𝛷𝛷(𝑭𝑭𝒕𝒕) = (𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡+1, . . . ,𝑦𝑦𝑡𝑡+𝐿𝐿−1)′ = 𝒀𝒀𝒕𝒕 (2) 

Moreover, the mapping between 𝑭𝑭𝒕𝒕 and 𝒀𝒀𝒕𝒕 is a one-to-one map with the conjugate 
form, Chen et al. (Chen et al. 2020) has derived the conjugate form of 𝛷𝛷 as 𝛹𝛹:ℝ𝐿𝐿 →
ℝ𝑛𝑛 (Eq. 3). 

𝛹𝛹(𝒀𝒀𝒕𝒕) = (𝑓𝑓1𝑡𝑡,𝑓𝑓2𝑡𝑡, … ,𝑓𝑓𝑛𝑛𝑡𝑡)′ = 𝑭𝑭𝒕𝒕 (3) 

Previous studies have predicted the future state of multi-omics time series based on 
the delay embedding theory (Sauer et al. 1991, Holmes et al. 2012). For example, Chen 
et al. (Chen et al. 2020) proposed an Anticipated Learning Machine (ALM) to achieve 
precise future-state prediction of time series with chaotic behavior related to genomics.  

1.3 Koopman theory 



Koopman theory (Koopman 1931) provides a new research direction in terms of 
dealing with complex nonlinear relations, which suggests that a nonlinear dynamical 
system can undergo a transformation into an infinite dimensional space, in which it 
evolves linearly in time by virtue of Koopman operator (Mezić 2005, Budišić, Mohr 
and Mezić 2012). 

However, we need to find an approximate finite dimensional representation for the 
infinite dimensional Koopman operator in practice. Rice et al. (Rice, Xu and August 
2020) assumed that there exists a mapping that can approximate Koopman operator to 
a finite dimension linear matrix, which can learn the forward (or backward) dynamics 
of system. Based on Koopman theory, Azencot et al. (Azencot et al. 2020) develop a 
Physics Constrained Learning framework to accurately predict the future state of 
proteomics time series data with oscillating behavior metabolomics. 
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