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1 Dataset Creation

In Figure S1, a graphical explanation of the test-, validation-, and train set
creation can be found.

Full IPD0220 Dataset of 6,857 complexes
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Fig. S1: A graphic for explaining the test, validation, and training set construc-
tions. The top figure shows how the full IPD0220 dataset is redundancy-
reduced by sequence similarity and further divided into the test-sets and
the validation-set. The middle and bottom figure shows how a unique
training set is created for each test set. The creation of the training
set is simplified, as not only the complexes with sequence similarity to
complexes in the test and validation sets are discarded from the po-
tential training set, but also those which share a CATH superfamily
annotation.
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2 Architecture 2

2 Architecture

In Tables S1-S7, S9, and S10 the detailed architectures for the 9 network archi-
tectures considered in the final ensemble for InterPepRank can be found. The
nets are slight variations on the same basic architecture, as described in the
main text.

Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -
Edge Features Input input 100×100×4 -
Amino Acid Embed embedding 100×4 Amino Acid One-hot

Node Features concatenate 100×47
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(25%) 100×100×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(ReLU activation)
100×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(ReLU activation)
100×8

Edge Features Input
EdgeConv1

EdgeConv3
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv2

EdgeConv4
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv3

Concatenate concatenate 100×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 32 Dropout

Activation ReLU activation 32 Dense
Classifier dense 4 Activation
Output softmax 4 Classifier

Tab. S1: Architecture for net 0 considered in the ensemble-prediction of Inter-
PepRank. The 4 classes are evenly distributed over the range 0 to 1 as
the net predicts the S-score normalized LRMSD (normalized with 4.0
LRMSD as 0.5).
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Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -
Edge Features Input input 100×100×4 -
Amino Acid Embed embedding 100×4 Amino Acid One-hot

Node Features concatenate 100×47
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(25%) 100×100×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(ReLU activation)
100×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(ReLU activation)
100×8

Edge Features Input
EdgeConv1

EdgeConv3
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv2

EdgeConv4
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv3

Concatenate concatenate 100×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 16 Dropout

Activation ReLU activation 16 Dense
Classifier dense 3 Activation
Output softmax 3 Classifier

Tab. S2: Architecture for net 1 considered in the ensemble-prediction of Inter-
PepRank. The 3 classes were the interval from 0.0 to 1.0 segmented
by 0.75 and 0.5 as the net predicts the S-score normalized LRMSD
(normalized with 4.0 LRMSD as 0.5).



2 Architecture 4

Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -
Edge Features Input input 100×100×4 -
Amino Acid Embed embedding 100×4 Amino Acid One-hot

Node Features concatenate 100×47
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(25%) 100×100×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(ReLU activation)
100×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(ReLU activation)
100×8

Edge Features Input
EdgeConv1

EdgeConv3
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv2

EdgeConv4
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv3

Concatenate concatenate 100×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 16 Dropout

Activation ReLU activation 16 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S3: Architecture for net 2 considered in the ensemble-prediction of Inter-
PepRank.
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Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -
Edge Features Input input 100×100×4 -
Amino Acid Embed embedding 100×2 Amino Acid One-hot

Node Features concatenate 100×45
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(25%) 100×100×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(ReLU activation)
100×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(ReLU activation)
100×8

Edge Features Input
EdgeConv1

EdgeConv3
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv2

EdgeConv4
edge conditioned convolution

(ReLU activation)
100×16

Edge Features Input
EdgeConv3

Concatenate concatenate 100×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 32 Dropout

Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S4: Architecture for net 3 considered in the ensemble-prediction of Inter-
PepRank.
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Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -
Edge Features Input input 100×100×4 -
Amino Acid Embed embedding 100×4 Amino Acid One-hot

Node Features concatenate 100×47
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(10%) 100×100×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features Input
EdgeConv1

EdgeConv3
edge conditioned convolution

(kernel net 16, ReLU activation)
100×16

Edge Features Input
EdgeConv2

EdgeConv4
edge conditioned convolution

(kernel net 16, ReLU activation)
100×16

Edge Features Input
EdgeConv3

Concatenate concatenate 100×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (10%) 48 Pooling
Dense dense 32 Dropout

Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S5: Architecture for net 4 considered in the ensemble-prediction of Inter-
PepRank.
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Name Layer Dimensions Input
Node Cons. Features input 50×42 -

Node Ligand Var. input 50×1 -
Amino Acid One-hot input 50×21 -
Edge Features Input input 50×50×4 -
Amino Acid Embed embedding 50×4 Amino Acid One-hot

Node Features concatenate 50×47
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(10%) 50×50×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(ReLU activation)
50×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(ReLU activation)
50×8

Edge Features Input
EdgeConv1

EdgeConv3
edge conditioned convolution

(ReLU activation)
50×16

Edge Features Input
EdgeConv2

EdgeConv4
edge conditioned convolution

(ReLU activation)
50×16

Edge Features Input
EdgeConv3

Concatenate concatenate 50×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (10%) 48 Pooling
Dense dense 32 Dropout

Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S6: Architecture for net 5 considered in the ensemble-prediction of Inter-
PepRank. The input for this net was constructed the same way as for
the other networks, but with a limit of 50 residues rather than 100.



2 Architecture 8

Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -

Node Features concatenate 100×64
Node Cons. Features

Node Ligand Var.
Amino Acid One-hot

Edge Features input 100×100×4 -

EdgeConv1
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Node Features

BatchNorm1 batch normalization 100×8 EdgeConv1
Dropout1 dropout (10%) 100×8 BatchNorm1

EdgeConv2
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Dropout1

BatchNorm2 batch normalization 100×8 EdgeConv2
Dropout2 dropout (10%) 100×8 BatchNorm2
Bypass1 1D dense 100×8 Node Features

Block1 addition 100×8
Dropout2
Bypass1

EdgeConv3
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Block1

BatchNorm3 batch normalization 100×8 EdgeConv3
Dropout3 dropout (10%) 100×8 BatchNorm3

EdgeConv4
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Dropout3

BatchNorm4 batch normalization 100×8 EdgeConv4
Dropout4 dropout (10%) 100×8 BatchNorm4

Block2 addition 100×8
Dropout4

Block1

EdgeConv5
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Block2

BatchNorm5 batch normalization 100×8 EdgeConv5
Dropout5 dropout (10%) 100×8 BatchNorm5

EdgeConv6
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Dropout5

BatchNorm6 batch normalization 100×8 EdgeConv6
Dropout6 dropout (10%) 100×8 BatchNorm6

Block3 addition 100×8
Dropout6

Block2

EdgeConv7
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Block3

BatchNorm7 batch normalization 100×8 EdgeConv7
Dropout7 dropout (10%) 100×8 BatchNorm7

EdgeConv8
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Dropout7

BatchNorm8 batch normalization 100×8 EdgeConv8
Dropout8 dropout (10%) 100×8 BatchNorm8

Block4 addition 100×8
Dropout8

Block3

EdgeConv9
edge conditioned convolution

(kernel net 8, ReLU activation)
100×32

Edge Features
Block4

Pooling GlobalAttentionPool 32 EdgeConv9
BatchNorm9 batch normalization 32 EdgeConv9

Dropout9 dropout (10%) 32 BatchNorm9
Prediction dense 1 Dropout9

Tab. S7: Architecture for net 6 considered in the ensemble-prediction of Inter-
PepRank. Training of net 6 was done in a binary connected manner,
running two copies of the net in parallel with weight-sharing inbetween
on two different decoys at any given moment. Additionally, during
training another net found in Table S8 was attached to the binary net,
and the loss function was calculated on this net’s capacity to classify
which of the two decoys is closer to native, as well as the individual
losses from the single branches, weighting single branches 0.1 and the
comparison at 1.0. This approach is similar to the Tricephalous net
suggested by Hurtado et al. (2018).
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Name Layer Dimensions Input

EdgeConv10
edge conditioned convolution

(kernel net 16, ReLU activation)
weight-sharing with EdgeConv11

100×16
Edge Features 6 1

Block4 6 1

EdgeConv11
edge conditioned convolution

(kernel net 16, ReLU activation)
weight-sharing with EdgeConv10

100×16
Edge Features 6 2

Block4 6 2

EdgeConv12
edge conditioned convolution

(kernel net 16, ReLU activation)
weight-sharing with EdgeConv13

100×16
Edge Features 6 1

Block4 6 1

EdgeConv13
edge conditioned convolution

(kernel net 16, ReLU activation)
weight-sharing with EdgeConv12

100×16
Edge Features 6 2

Block4 6 2

Pooling1 GlobalAttentionPool (32) 32 EdgeConv10
Pooling2 GlobalAttentionPool (32) 32 EdgeConv11
Pooling3 GlobalAttentionPool (32) 32 EdgeConv12
Pooling4 GlobalAttentionPool (32) 32 EdgeConv13

Add1 addition 32
Pooling1
Pooling4

Add2 addition 32
Pooling2
Pooling3

BatchNorm10 batch normalization 32 Add1
Dropout10 dropout (10%) 32 BatchNorm10

BatchNorm11 batch normalization 32 Add2
Dropout11 dropout (10%) 32 BatchNorm11

Dense1 dense 1 Dropout10
Dense2 dense 1 Dropout11

Comparison addition 1
Dense1
Dense2

Tab. S8: The extra comparison-net used during training of net 6, attached to
two weight-sharing instances of net 6 referred to as net 6 1 and 6 2.
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Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -
Edge Features Input input 100×100×4 -
Amino Acid Embed embedding 100×4 Amino Acid One-hot

Node Features concatenate 100×47
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(25%) 100×100×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
EdgeConv1

EdgeConv3
edge conditioned convolution

(kernel net 16, ReLU activation)
100×16

Edge Features
EdgeConv2

EdgeConv4
edge conditioned convolution

(kernel net 16, ReLU activation)
100×16

Edge Features
EdgeConv3

Concatenate concatenate 100×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAttentionPooling 32 Concatenate
Dropout dropout (25%) 32 Pooling
Dense dense 32 Dropout

Activation ReLU activation 32 Dense
Classifier dense 4 Activation
Output softmax 4 Classifier

Tab. S9: Architecture for net 7 considered in the ensemble-prediction of Inter-
PepRank. The 4 classes are evenly distributed over the range 0 to 1 as
the net predicts the S-score normalized LRMSD (normalized with 4.0
LRMSD as 0.5).



2 Architecture 11

Name Layer Dimensions Input
Node Cons. Features input 100×42 -

Node Ligand Var. input 100×1 -
Amino Acid One-hot input 100×21 -
Edge Features Input input 100×100×4 -
Amino Acid Embed embedding 100×4 Amino Acid One-hot

Node Features concatenate 100×47
Amino Acid Embed
Node Cons. Features

Node Ligand Var.
Edge Features 2D dropout(10%) 100×100×4 Edge Features Input

EdgeConv1
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
Node Features

EdgeConv2
edge conditioned convolution

(kernel net 8, ReLU activation)
100×8

Edge Features
EdgeConv1

EdgeConv3
edge conditioned convolution

(kernel net 16, ReLU activation)
100×16

Edge Features
EdgeConv2

EdgeConv4
edge conditioned convolution

(kernel net 16, ReLU activation)
100×16

Edge Features
EdgeConv3

Concatenate concatenate 100×48

EdgeConv1
EdgeConv2
EdgeConv3
EdgeConv4

Pooling GlobalAttentionPooling 32 Concatenate
Dropout dropout (10%) 32 Pooling
Dense dense 32 Dropout

Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S10: Architecture for net 8 considered in the ensemble-prediction of Inter-
PepRank.
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2.1 Discussion on Architecture Performance

Most of the final network architectures performed similarly to each other, see
Figure S2, which is unsurprising considering most of them are based on the
same general architecture framework. The outlier of network 5 (Table S6) can
be explained by its small input size, only 50 considered residues compared to
100 for the other architectures. For some particularly large peptides in the test
sets, this means that the entire interaction-surface might not even be covered.
However, increasing the number of nodes up to 250 and above did not signifi-
cantly change the performance (data not shown). A more surprising difference
in performance is between network number 8 (Table S10) and 7 (Table S9). Net-
work architecture 8 is virtually identical to architecture 7, with the differences
of a less aggressive dropout during training and being a 2-class classifier rather
than a 4-class classifier. In fact, most of the networks acting as a multi-classifier
rather than a 2-class classifier shows markedly better performance, which can
probably be attributed to the fact that they have access to more data regarding
the targets during training, considering the more fine-grained representation of
the loss.

Networks 7 and 8 also implement a global attention pooling for their pooling
layers, rather than a global average pooling, but this change did not seem to
translate to any significant improvement in performance. Attention layers per-
form best with large amounts of varied data with inherent patterns, such as text
decoding or recognition of protein motifs in sequences, and it is possible that
their performance is limited here by the relatively low number of truly unique
positive decoy structures. All peptide-protein complex decoys are derived from
no more than 6,587 different complexes, and all positive decoys in the data set
are by definition structures which are similar to these, limiting the variation of
the data that can be learned.

This relatively low variance between positive decoys might also be a con-
tributing factor to why network architecture 6 did not achieve better perfor-
mance, even with a much deeper architecture and a learning scheme previously
shown to facilitate comparison in quality assessment. However, another reason
for this might be the small size of the interim layers, kept down by necessity
to keep the speed of the network reasonable for the evaluation of thousands of
decoys in minutes. As shown in Li et al. (2019), using residual couplings as done
in this work can allow for a considerably deeper network, but this might not
always lead to a boost in performance, especially not when not coupled with
wide layers and dilated convolutions.
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Fig. S2: AUC on validation targets for the different individual network archi-
tectures, the final ensemble method and an ensemble including all ar-
chitectures. The network architectures are numbered from 0 through 8,
and the ensemble methods are named after the included architectures.
The ensemble 0123478 shows optimal performance on the validation
data. A detailed description of the architectures and their differences
can be found in the Supplementary Information.
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3 Precision-Recall Curves

For every ROC-curve in the main paper, Figure S3 includes a corresponding
Precision-Recall curve.

ROC-curves measure predictive power independently of the bias in data
set labeling, making them suitable for cross-target comparison where different
peptide-protein target pairs yield different distributions of LRMSD of their de-
coy sets because of parameters such as receptor size, peptide size, or general
success or bias of the docking method, and making analysis of heavily biased
data sets easier. Precision-Recall curves on the other hand provide an abso-
lute metric of performance. Because of the inherently different distributions of
LRMSD of decoys generated from different target pairs, the individual curves
in the sub figures of Figure S3 are not comparable to each other, but they are
included here as a frame of reference of what kind of performance can be ex-
pected when applying the analyzed methods on decoys generated by fast-fourier
docking.
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Fig. S3: Precision-recall-curves for the different methods, each target is repre-
sented by 1 curve, and a violin-plot over the distributions of AUCs
(average percisions). The area under the curve (AUC) displayed in the
graphs is the average and median over all targets.

4 Disordered Peptides

The full set of complexes in the dataset was divided into a ”disordered” and
”ordered” set based on how much of the peptide in each complex was predicted
to be disordered when unbound by DISOPRED Ward et al. (2004). A peptide
was considered disordered if at least 75% of it was predicted as disordered when
unbound. Conversely, a peptide was considered ordered if no more than 10% of
it was predicted as disordered when unbound. Differences in AUC distribution
is visualized in Figure S4.
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Fig. S4: Differences in AUC distribution for peptides predicted to be disordered
when unbound and those predicted to be ordered when unbound.

5 Expanded Analysis test set

With a decrease in test set size, computationally heavy re-scoring methods like
pyDock3 or Rosetta FlexPepDock scoring-mode can be included in the compar-
ison. See Figure S5 for an analogue to Figure 4 of the main paper.

Using Rosetta FlexPepDock scoring mode only to re-score rigid-body docked
decoys proved slow, even without any refinement, as was discussed in the main
paper. Since the Rosetta scoring function is a fine-grained function developed
for protein refinement and design, it makes sense it would perform poorly on
structures not necessarily optimal by the Rosetta standard. Indeed, when using
Rosetta to score structures, it is common practice to first relax the structure
through the Rosetta Relax protocol, something which would considerably add
to the run-time if attempted in this situation.



5 Expanded Analysis test set 17

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
InterPepRank

Mean AUC: 0.705
Median AUC: 0.695

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Zrank

Mean AUC: 0.658
Median AUC: 0.651

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

DFIRE

Mean AUC: 0.655
Median AUC: 0.662

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

PIPER

Mean AUC: 0.599
Median AUC: 0.619

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

pyDock3

Mean AUC: 0.600
Median AUC: 0.586

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

FlexPepDock

Mean AUC: 0.559
Median AUC: 0.560

InterPepRank DFIRE Zrank PIPER pyDock3 FlexPepDock

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Fig. S5: ROC-curves for all methods discussed in the main paper, including
pyDock3, and a violin-curve summarizing all AUCs, for the Expanded
Analysis set (a randomly selected set of 50 targets all methods were
run on). Each target is represented by 1 curve. The area under the
curve (AUC) displayed in the graphs is the average and median over
all targets.
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6 Decoy Distribution

In Figure S6 are some graphical representations of the LRMSD distributions
of decoys selected by the different scoring methods for refinement. Results are
only shown for the set all methods were run on.
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Fig. S6: Distribution of LRMSD of decoys selected for refinement by the differ-
ent methods. Results shown for the Expanded Analysis set. In (a), all
decoys at LRMSD 40+ were summed into the 40 Å bin. In (c), the me-
dian number of models of the different quality-measures produced per
method per target after refinement for all methods and targets in the
Expanded Analysis set are shown binned by AUC on original decoys,
to highlight that good performance on the rigid-body docked decoys
translates to well-refined models.
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Fig. S7: (a) Distribution of InterPepRank errors for decoys generated by differ-
ent docking algorithms for the Expanded Analysis Set. (b) Distribu-
tion of AUCs for InterPepRank scoring of decoys generated by different
docking algorithms for the Expanded Analysis Set.

7 Bias Towards Different Docking Algorithms

Figure S7 shows the distribution of error of InterPepRank over decoys generated
by different docking algorithms.

8 Interface complexity bias

As can be seen in Figure S8, all investigated methods except for InterPepRank
shows a slight decrease in performance when the contact order of the true bind-
ing site is low. This indicates that if the binding site consists only of continuous
stretches of the receptor, as is the case with β-sheet reinforcement, the other
methods investigated will see a small but significant decrease in performance. In
fact, if only interfaces with high-contact-order native peptide-binding interfaces
are investigated, the performances of DFIRE and InterPepRank cannot be said
to be significantly different.

Contact order is here calculated by, for each residue in a given set of residues,
calculating the average distances between these residues in sequence. Any dis-
tance above 10 is counted as 10 instead. For example, if we calculate the contact
order for a set of residues positioned along one side of an α-helix, that set would
then have a contact order of approximately 3.6 as there are around 3.6 residues
per turn in most α-helices.
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Fig. S8: Distribution of AUCs for different targets separated by whether the
true binding site has a contact order larger than or equal to 3 or not.
This cutoff was selected as an interface encompassing one side of a helix
(similar to a coiled coil structure) would yield a contact order of slightly
above 3 and interfaces mainly composed of β-sheet reinforcement would
yield a contact order of around 1.

9 Remote Homologs and Similar Interface

The test, validation, and training sets are separated by both sequence identity
as well as CATH superfamily of the receptor. Still, there exists a possibility
for remote sequence homologs being present in the training set, undetectable
by sequence identity. Additionally, while two proteins belonging to the same
CATH superfamily means they share overall topological features in excess of a
demonstrable evolutionary relationship, this does not necessarily mean that two
proteins which do not share CATH superfamily cannot share some structural
motifs, such as similar interfaces.

The core idea of a machine learning method is that it should be able to
make use of and generalize over remote differences, but a problem arises if,
rather than finding a general solution, the machine learning algorithm simply
stores training target information like a look-up table. In this case, rather
than demonstrating generalizability over novel datapoints, a machine learning
algorithm would in effect work like a template based method or simple k-nearest-
neighbors approach where it can look through its stored look-up table for the
most similar previous case and use it as a reference. If a machine learning
method has failed to generalize, its performance will risk being over-estimated
when the test set contains targets with remote similarity to individual targets
in the train set.

Similarities between targets in the test and train sets were investigated to
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infer whether InterPepRank was truly able to generalize over targets or if the
information stream between sets was too great, which would result in Inter-
PepRank working like a template-based method and not being able to generalize
to novel complexes. To this end, every receptor in every test set was compared
to all receptors of their respective training sets.

9.1 PSSM-PSSM similarity

Firstly, the PSSM-profiles of all test targets were pairwise aligned to all training
data PSSM using palignp Ohlson et al. (2004) and E-values were generated by
fitting Gumbel-distributions to the score distributions of aligning random PSSM
for every target, similarly to Gao and Skolnick (2010), and adjusting for database
size. By this analysis, no test target had any PSSM-PSSM significant match
(E-value < 10−3) in its training set.

9.2 Interface similarity

Secondly, the interfaces of every test complex was compared to every train
complex using iAlign (Gao and Skolnick (2010)). In this case, 10 targets in
the test set matched to different targets in their training sets with E-values
less than or equal to 10−3, indicating that for these 10 out of 687 targets,
there was a template for interaction available in its training set for use in a
k-nearest-neighbor like approach. However, the ROC AUC for InterPepRank to
select correct decoys for each of these 10 targets was not significantly different
from its performance on targets without any such similarities (p-value > 0.17),
nor could any correlation between interface similarity between a target and its
training data and InterPepRank performance be proven (p-value > 0.67).

9.3 Representative Set Annex

In Table S11, the 687 peptide-protein complex representatives utilized as true
native structures in this study can be found.
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1aw8BA 1bc5AT 1bgyJK 1cmxCD 1cqtBJ 1czyAD 1d4wAC 1dkdDH 1e91AB
1eakDR 1eg4AP 1ejhAE 1elwAC 1emuAB 1f47BA 1f59AC 1g0yRI 1gagAB
1gxcDE 1gy3CF 1hesAP 1hqqCG 1hr8HR 1htmFE 1i4oAC 1i51DF 1ilqAC
1isqAB 1j2xAB 1jd6AB 1jdpAH 1jm4BA 1jmtAB 1jw6AB 1kcrLP 1ky7AP
1lj2AC 1ljzAB 1m06FJ 1mk9DA 1n7fBD 1nltAB 1npqAB 1nx0AC 1o0pAB
1om9BQ 1ozsAB 1p16BD 1pu9AB 1q0wBA 1qd6DB 1rfiAC 1rpqAW 1rxmAB
1szaBZ 1t0jBC 1t2vAF 1tn6BC 1tqeQX 1tt5BE 1ttwAB 1twbAC 1ty4BD
1vf5CG 1vppVX 1w70AC 1yrkAB 1ywhMN 1yypAB 1z3mES 1z7z34 1z9oDJ
1zkkBF 2a40AC 2a4jAB 2a7uBA 2aucCD 2buoAT 2c5iTP 2cciDI 2ce9AX
2cnmAD 2cnzAB 2dohXC 2dvqBQ 2dymAB 2f69AB 2f9uAB 2fffBA 2fmkAB
2fymDE 2g46AC 2ggmBD 2ghtBD 2h1cAB 2hdxEK 2hu2AB 2hwf14 2hzsFK
2ibfAD 2ifrAB 2isqAB 2j2897 2jbyAB 2jdlAC 2jktIQ 2jmjAP 2jz3CA
2k17AP 2k9uAB 2kbmAX 2knhAB 2kqfAB 2kqsAB 2krbAB 2ks9AB 2kxcAB
2kxqAB 2kzuAB 2l0yAB 2l1cAB 2l6eAB 2lbmAC 2lcsAB 2lctAB 2lozAB
2lp0AB 2lskAB 2lspBA 2lsrAB 2lsvAB 2lxsAB 2makAB 2mc6AB 2mkcAB
2mnjBA 2mowAB 2mv7AB 2mwoAB 2mzdAB 2n01BA 2n0yAB 2n3kAB 2nnuAB
2ns8AE 2nudBD 2p0wBQ 2p5bAI 2pehAC 2phkAB 2pieAF 2pnxCD 2pqnAB
2pv2BE 2pv3AC 2pvcBD 2q6gAC 2qasAB 2qiyAC 2qmeAI 2qqgAB 2qqsAD
2r9qBY 2rquAB 2rqwAB 2rr4AB 2rt5AB 2v2fFA 2v86BD 2v8fBC 2vdoAC
2vzgBA 2w2uBD 2w6jHI 2w84AB 2wa8AB 2wo6BC 2x04BD 2x39AC 2x4yOP
2xc8BC 2xjzCK 2xpoCD 2xpxAB 2xqnTA 2xs0AB 2xvcAB 2xxnAB 2xzeBR
2y65CW 2ybfAB 2ykaAB 2yktAB 2z3fCK 2zjdAB 3a0ben 3aaeIV 3aaeJV
3agzAC 3al3AB 3aloAE 3aslAB 3auwBA 3bimDK 3bqoAB 3brfAD 3bzxBA
3c01HD 3c0tAB 3chxJL 3cxwAB 3cyyAD 3d1fBQ 3d8aDS 3d9nBZ 3dabEF
3dd7AB 3dktCM 3e1kEF 3e2bAC 3e2uCG 3echBC 3ehuAC 3er5EI 3eu7AX
3eyfBE 3f1iSC 3f2oAC 3fdlAB 3fksPR 3fxxAB 3g2uAC 3g7lAP 3g7zAC
3ggzBF 3gjoCG 3gl6AB 3gm1AE 3gz1AQ 3h1zAP 3h52AN 3hdiBD 3hymHG
3i5rAB 3iaxAB 3iciAC 3ik5AB 3iswAC 3izoBG 3j47VQ 3j47US 3jc21w
3jq5AB 3jqolm 3juaGH 3jwrBD 3k48AS 3kzeCE 3l6yAB 3lcnAC 3lgeBF
3liyEK 3lm1IJ 3mazAB 3mk4AB 3ml4CG 3mpjBY 3n5eBD 3na1BD 3nk4AC
3nmxBE 3o0eFQ 3o42AB 3oe0AI 3olrAE 3oszAB 3p72AB 3pbpDF 3pcsAE
3pe4AB 3pluAC 3pqrAB 3q47BC 3q6sCE 3qbrAB 3qisAB 3qksAC 3r0hDd
3r42AB 3r7gAB 3r9iCH 3rqeCE 3rqfAE 3sj9AB 3sl9BD 3swcAP 3t7gAC
3tdiBC 3tduAF 3tdzBF 3twwBD 3tz1AB 3tzxBC 3u1jBA 3u5nAC 3u7dCD
3ubwAP 3ueoDE 3um2AB 3upvAB 3vivBC 3w6kCA 3wbnAB 3wp1BA 3wuuAC
3wxaAC 3zfwBY 3zhaDJ 3zilAB 3zrjAX 3zrzAC 4a1gDH 4a2aBD 4a62AC
4ajyVH 4aktAC 4am9AB 4au7AC 4b45AB 4b60AC 4bh6GO 4bj6CD 4bl0DF
4bq6FE 4bqdBD 4btaAC 4bu1AC 4bwsDE 4bxrAC 4bxwAF 4c1qAC 4c31EF
4c5iAC 4cc9BC 4ccoBD 4cfhBC 4chbBD 4cugBF 4cydBF 4dayAC 4dcbAF
4dowAC 4dxrAB 4eqfAB 4ezvAC 4f02DF 4fbwBD 4fifAC 4flnBE 4fsjBE
4g2vAB 4geqCE 4gneAB 4gq6AB 4gxlAB 4h0hBD 4h2tAC 4h3hEF 4h62QK
4hrhAC 4htpAC 4i7bAB 4igaAB 4iimAC 4ikaAD 4imiDF 4irvBF 4isrBE
4iuuBC 4j1vCF 4j2cCD 4j2lAC 4j8sAB 4jhkAC 4jifAB 4jmhAB 4jmrCH
4jo8AB 4jolDH 4jqiAV 4k0uAB 4l1uCH 4l7xAU 4lebAB 4lk9AB 4lnpAB
4m5sAB 4m6bDF 4mi8BD 4mliAB 4mzgBA 4mzjAT 4n4hAB 4nawAD 4nb3AC
4nf9BD 4nuvAC 4obhCF 4od7AD 4odlAD 4oi4CD 4oucAB 4oykAC 4oz1BC
4pi0KN 4piqAB 4psiBE 4pyuAC 4q5uAC 4q96EC 4qaeFU 4qbrCE 4qeoAP
4qmfDC 4qmgEJ 4qxbAE 4r4nAa 4reyAB 4riqDF 4rqiBF 4rrvAB 4s0rLS
4tk4BC 4tknAD 4tmpAB 4tt3EJ 4tvqCE 4txqBD 4tzoEF 4u39GP 4u6yAP
4u7iAB 4uf1AB 4um9DF 4uqyAB 4uwxAC 4ux6BA 4w4zBF 4w5aBD 4wj7AW
4wjpAB 4wphBC 4wsfAB 4wzxAE 4x2oAC 4x3hAB 4x8pAB 4xevAC 4xgrGH
4xtrAG 4xvjHA 4yl6AB 4yosAE 4ywcBD 4yzhAB 4z0rBD 4z2pBC 4zbjBD
4znyAB 4zoxAB 4zozAY 4zqwBA 5a53AB 5a5bRY 5aerAC 5ajkCD 5awuAB
5b4wDJ 5c5eAH 5c7fDH 5cqyAC 5cvdBE 5dahAD 5de2AC 5di8AC 5dxaAF
5e4wDF 5efiAC 5eftBA 5en7CD 5ev0BD 5f0pBD 5f5vDF 5f67AC 5fgcEA
5fjwAL 5fn3BG 5fpxBF 5frqAG 5ft1GH 5fvlBC 5fw5AC 5fztAB 5gk9AB
5glfCD 5gowBA 5gtbAB 5gtuAB 5h5qAB 5h7yAB 5h9dBL 5hawBK 5hkhAB
5hkyAB 5hoiAD 5hvzAC 5i22AB 5ig9AI 5ii0CF 5itzBD 5ix2BQ 5ixdAB
5j3hEB 5jcyAB 5jelAB 5jmeBF 5jnbDH 5jtpCG 5k2mIM 5kc1LK 5koaBD
5l0yCI 5lasBD 5ldeBR 5lhzBE 5lm1AB 5lmgAD 5lmxGD 5lsjCQ 5ly3AB
5m0jCI 5m5sBH 5m72AB 5m9eAE 5mf9AB 5mfgAE 5mgxFA 5mk1CH 5mu3BC
5mx2zy 5n22AE 5nc7AI 5nl1AH 5oakCD 5ojrAE 5ok6BC 5okzGJ 5onbAB
5onsAB 5oo6TU 5ovpAB 5oxwAH 5supBG 5swfAB 5t0qAB 5tgiBD 5tzqBC
5u1gDK 5u1mAB 5ua5AB 5v1dCF 5v1tAB 5v90CD 5va6AC 5vaoAF 5vb9BD
5vklAB 5vmoAB 5vwvAB 5vzuBE 5w2jBF 5w4sAB 5w93AD 5wa4AM 5waiBD

5wbhDW 5wggAB 5wknBD 5wriAD 5wtbAE 5wvoCD 5xfqBF 5xjr2M 5xodAB
5xpuAB 5xsqCD 5xtbIW 5xtbQW 5xvwEF 5xxfAE 5xyfAB 5y59BC 5y7wBD
5yc4AP 5yf4AB 5ygfAD 5yt0AB 5zfuBH 5znrBQ 5zooGA 5zt0BI 5zz9AE
6a5eDF 6ak2AD 6am0AC 6am0BC 6b0xDd 6b2zMT 6b3xAB 6b9hAB 6bheAB
6c0aAB 6cnlGS 6d6rFJ 6dcnAD 6deiAC 6drtBE 6ef31n 6eiwBD 6et51y
6f6dAB 6f8gAE 6fbkAP 6fkqAB 6fo2BI 6g0yAJ 6g84BC 6gbeAB 6gd5AB
6gfqBC 6gos1A 6gqnBC 6gvlAB 6gy2AD 6h41AB 6h9jAD 6h9oCD 6ha6AD
6hboAB 6he5GL 6hksAG 6hosBC 6hquFN 6hy2XA 6i5nAI 6ie4AB 6ituAB
6iuiAD 6ixpDE 6j0wAC 6j6hTn 6j8nBA 6jjzBD 6jx3BA 6mhfAC 6mlcCF
6n3eAB 6n87AC 6n9xAF 6nj8CF 6njgCB 6nnvCK 6ocpCP 6oi4AE 6oswAB
6punCF 6q36BD 6qcgAH 6qnpCJ 6qxfMN 6rh6AB 6rr0BI 6rrcCB 6s07AC
6s1rAB 6s3fAB 6s8nFC

Tab. S11: 687 peptide-protein complexes.
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