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1 Dataset Creation

In Figure S1, a graphical explanation of the test-, validation-, and train set
creation can be found.

Full IPD0220 Dataset of 6,857 complexes

Redundancy-reduced representatives divided into
smaller sets

e A

Fig. S1: A graphic for explaining the test, validation, and training set construc-
tions. The top figure shows how the full IPD0220 dataset is redundancy-
reduced by sequence similarity and further divided into the test-sets and
the validation-set. The middle and bottom figure shows how a unique
training set is created for each test set. The creation of the training
set is simplified, as not only the complexes with sequence similarity to
complexes in the test and validation sets are discarded from the po-
tential training set, but also those which share a CATH superfamily
annotation.



2 Architecture

2 Architecture

In Tables S1-S7, S9, and S10 the detailed architectures for the 9 network archi-
tectures considered in the final ensemble for InterPepRank can be found. The
nets are slight variations on the same basic architecture, as described in the

main text.
Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x 1 -
Amino Acid One-hot input 100x21 -
Edge Features Input input 100x100x4 -
Amino Acid Embed embedding 100x4 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 100x47 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(25%) 100x100x4 Edge Features Input
edge conditioned convolution Edge Features
EdgeConvl (ReLU activation) 100x8 Node Features
edge conditioned convolution Edge Features Input
EdgeConv2 (ReLU activation) 1008 EdgeConvl
edge conditioned convolution Edge Features Input
EdgeConv3 (ReLU activation) 10016 EdgeConv2
edge conditioned convolution Edge Features Input
EdgeConvd (ReLU activation) 10016 EdgeConv3
EdgeConvl
EdgeConv2
Concatenate concatenate 100x48 EdgeConv3
EdgeConv4
Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 32 Dropout
Activation ReLU activation 32 Dense
Classifier dense 4 Activation
Output softmax 4 Classifier

Tab. S1: Architecture for net 0 considered in the ensemble-prediction of Inter-
PepRank. The 4 classes are evenly distributed over the range 0 to 1 as
the net predicts the S-score normalized LRMSD (normalized with 4.0
LRMSD as 0.5).



2 Architecture

Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x1 -
Amino Acid One-hot input 100x21 -
Edge Features Input input 100x100x4 -
Amino Acid Embed embedding 100x4 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 100x47 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(25%) 100x100x4 Edge Features Input
edge conditioned convolution Edge Features
EdgeConvl g (ReLU activation) 100x8 Noie Features
edge conditioned convolution Edge Features Input
EdgeConv2 ¢ (ReLU activation) 100x8 ¢ EdgeConvl v
edge conditioned convolution Edge Features Input
EdgeConv3 § (ReLU activation) 10016 § EdgeConv2 ’
edge conditioned convolution Edge Features Input
EdgeConvd g (ReLU activation) 10016 ¢ EdgeConv3 v
EdgeConvl
Concatenate concatenate 100x48 ggiiggﬁzg
EdgeConv4
Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 16 Dropout
Activation ReLU activation 16 Dense
Classifier dense 3 Activation
Output softmax 3 Classifier

Tab. S2: Architecture for net 1 considered in the ensemble-prediction of Inter-
PepRank. The 3 classes were the interval from 0.0 to 1.0 segmented
by 0.75 and 0.5 as the net predicts the S-score normalized LRMSD
(normalized with 4.0 LRMSD as 0.5).



2 Architecture

Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x1 -
Amino Acid One-hot input 100x21 -
Edge Features Input input 100x100x4 -
Amino Acid Embed embedding 100x4 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 100x47 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(25%) 100x100x4 Edge Features Input
edge conditioned convolution Edge Features
EdgeConvl g (ReLU activation) 100x8 Nofle Features
edge conditioned convolution Edge Features Input
EdgeConv2 ¢ (ReLU activation) 100x8 ¢ EdgeConvl v
edge conditioned convolution Edge Features Input
EdgeConv3 g (ReLU activation) 100x16 ¢ EdgeConv2
edge conditioned convolution Edge Features Input
EdgeConvd ¢ (ReLU activation) 10016 ¢ EdgeConv3 v
EdgeConvl
Concatenate concatenate 100x48 giiiggﬁzg
EdgeConv4
Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 16 Dropout
Activation ReLU activation 16 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S3: Architecture for net 2 considered in the ensemble-prediction of Inter-

PepRank.



2 Architecture

Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x1 -
Amino Acid One-hot input 100x21 -
Edge Features Input input 100x100x4 -
Amino Acid Embed embedding 100x2 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 100x45 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(25%) 100x100x4 Edge Features Input
edge conditioned convolution Edge Features
EdgeConvl g (ReLU activation) 100x8 Nofle Features
edge conditioned convolution Edge Features Input
EdgeConv2 ¢ (ReLU activation) 100x8 ¢ EdgeConvl v
edge conditioned convolution Edge Features Input
EdgeConv3 g (ReLU activation) 100x16 ¢ EdgeConv2 ’
edge conditioned convolution Edge Features Input
EdgeConvd ¢ (ReLU activation) 10016 ¢ EdgeConv3 v
EdgeConvl
Concatenate concatenate 100x48 giiiggﬁzg
EdgeConv4
Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (25%) 48 Pooling
Dense dense 32 Dropout
Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S4: Architecture for net 3 considered in the ensemble-prediction of Inter-

PepRank.
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Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x1 -
Amino Acid One-hot input 100x21 -
Edge Features Input input 100x100x4 -
Amino Acid Embed embedding 100x4 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 100x47 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(10%) 100x100x4 Edge Features Input
edge conditioned convolution Edge Features
EdgeConvl (kernel net 8, ReLU activation) 100x8 Node Features
edge conditioned convolution Edge Features Input
EdgeConv2 kernel net 8, ReLLU activation 1008 EdgeConvl
g
edge conditioned convolution Edge Features Input
EdgeConv3 (kernel net 16, ReLU activation) 100x16 EdgeConv2
edge conditioned convolution Edge Features Input
EdgeConvd (kernel net 16, ReLU activation) 10016 EdgeConv3
EdgeConvl
EdgeConv2
Concatenate concatenate 100x48 EdgeConv3
EdgeConv4
Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (10%) 48 Pooling
Dense dense 32 Dropout
Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S5: Architecture for net 4 considered in the ensemble-prediction of Inter-

PepRank.
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Name Layer Dimensions Input
Node Cons. Features input 50%x42 -
Node Ligand Var. input 50x1 -
Amino Acid One-hot input 50x21 -
Edge Features Input input 50x50x4 -
Amino Acid Embed embedding 50x4 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 50x47 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(10%) 50x50x4 Edge Features Input
edge conditioned convolution Edge Features
e activation ode Features
EdgeConvl ReLU . 50x8 Node F
edge conditioned convolution Edge Features Input
EdgeConv2 (ReLU activation) 50x8 EdgeConvl
edge conditioned convolution Edge Features Input
EdgeConv3 (ReLU activation) 5016 EdgeConv?2
edge conditioned convolution Edge Features Input
EdgeConv4 (ReLU activation) 50x16 EdgeConv3
EdgeConvl
EdgeConv2
Concatenate concatenate 50x48 EdgeConv3
EdgeConv4
Pooling GlobalAveragePooling 48 Concatenate
Dropout dropout (10%) 48 Pooling
Dense dense 32 Dropout
Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S6: Architecture for net 5 considered in the ensemble-prediction of Inter-
PepRank. The input for this net was constructed the same way as for
the other networks, but with a limit of 50 residues rather than 100.
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Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x1 -
Amino Acid One-hot input 100x21 -
Node Cons. Features
Node Features concatenate 100x64 Node Ligand Var.
Amino Acid One-hot
Edge Features input 100x100x4 -
edge conditioned convolution Edge Features
EdgeConvl (kernel net 8, ReLU activation) 100x8 Node Features
BatchNorm1 batch normalization 100x8 EdgeConv1l
Dropout1 dropout (10%) 100x8 BatchNorm1
edge conditioned convolution Edge Features
EdgeConv2 (kernel net 8, ReLU activation) 100x8 Dropoutl
BatchNorm2 batch normalization 100x8 EdgeConv2
Dropout2 dropout (10%) 100x8 BatchNorm2
Bypassl 1D dense 100x8 Node Features
Block1 addition 100x8 Dropout2
Bypassl
edge conditioned convolution Edge Features
EdgeConv3 (kernel net 8, ReLU activation) 100x8 Block1
BatchNorm3 batch normalization 100x8 EdgeConv3
Dropout3 dropout (10%) 100x8 BatchNorm3
edge conditioned convolution Edge Features
EdgeConvd (kernel net 8, ReLU activation) 100x8 Dropout3
BatchNorm4 batch normalization 100x8 EdgeConv4
Dropout4 dropout (10%) 100x8 BatchNorm4
e Dropout4
Block2 addition 100x 8 Blockl
edge conditioned convolution Edge Features
EdgeConv5 (kernel net 8, ReLU activation) 100x8 Block2
BatchNorm5 batch normalization 100x8 EdgeConvh
Dropout5 dropout (10%) 100x8 BatchNormb
edge conditioned convolution Edge Features
EdgeConv6 (kernel net 8, ReLU activation) 100x8 Dropouth
BatchNorm6 batch normalization 100x8 EdgeConv6
Dropout6 dropout (10%) 100%8 BatchNorm6
e Dropout6
Block3 addition 100x 8 Block?2
edge conditioned convolution Edge Features
EdgeConv7 (kernel net 8, ReLU activation) 100x8 Block3
BatchNorm7 batch normalization 100x8 EdgeConv7
Dropout? dropout (10%) 100x8 BatchNorm7
edge conditioned convolution Edge Features
EdgeConv8 (kernel net 8, ReLU activation) 100x8 Dropout7
BatchNorm8 batch normalization 100x8 EdgeConv8
Dropout8 dropout (10%) 100%8 BatchNorm8
e Dropout8
Block4 addition 100x8 Block3
edge conditioned convolution Edge Features
EdgeConv9 (kernel net 8, ReLU activation) 10032 Block4
Pooling GlobalAttentionPool 32 EdgeConv9
BatchNorm9 batch normalization 32 EdgeConv9
Dropout9 dropout (10%) 32 BatchNorm9
Prediction dense 1 Dropout9

Tab. S7: Architecture for net 6 considered in the ensemble-prediction of Inter-

PepRank. Training of net 6 was done in a binary connected manner,
running two copies of the net in parallel with weight-sharing inbetween
on two different decoys at any given moment. Additionally, during
training another net found in Table S8 was attached to the binary net,
and the loss function was calculated on this net’s capacity to classify
which of the two decoys is closer to native, as well as the individual
losses from the single branches, weighting single branches 0.1 and the
comparison at 1.0. This approach is similar to the Tricephalous net
suggested by Hurtado et al. (2018).
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Name Layer Dimensions Input
edge conditioned convolution
EdgeConv10 (kernel net 16, ReLU activation) 100x16 Edg]eglFeiZugei 6-1
weight-sharing with EdgeConv11 o¢ -
edge conditioned convolution
EdgeConvll (kernel net 16, ReLU activation) 100x16 Edg;lFoiZugc; 6-2
weight-sharing with EdgeConv10 o¢ -
edge conditioned convolution
EdgeConv12 (kernel net 16, ReLU activation) 100x16 Edg;lFeiZugei 6-1
weight-sharing with EdgeConv13 o¢ -
edge conditioned convolution
EdgeConv13 (kernel net 16, ReLU activation) 100x16 Edg;lFeiZuge; 6-2
weight-sharing with EdgeConv12 o¢ -
Poolingl GlobalAttentionPool (32) 32 EdgeConv10
Pooling2 GlobalAttentionPool (32) 32 EdgeConv1l
Pooling3 GlobalAttentionPool (32) 32 EdgeConv12
Pooling4 GlobalAttentionPool (32) 32 EdgeConv13
Add1l addition 32 Poolingl
Pooling4
Add2 addition 32 Pooling2
Pooling3
BatchNorm10 batch normalization 32 Add1l
Dropout10 dropout (10%) 32 BatchNorm10
BatchNorm11 batch normalization 32 Add2
Dropout11 dropout (10%) 32 BatchNorm11
Densel dense 1 Dropout10
Dense2 dense 1 Dropoutll
. . Densel
Comparison addition 1 Dense?

Tab. S8: The extra comparison-net used during training of net 6, attached to
two weight-sharing instances of net 6 referred to as net 6_1 and 6_2.
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Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x1 -
Amino Acid One-hot input 100x21 -
Edge Features Input input 100x100x4 -
Amino Acid Embed embedding 100x4 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 100x47 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(25%) 100x100x4 Edge Features Input
edge conditioned convolution Edge Features
EdgeConvl (kernel net 8, ReLU activation) 100x8 Node Features
edge conditioned convolution Edge Features
ernel net 8, Re activation geConv
EdgeConv2 K ) 3. ReLU L 100x8 EdeeConvl
edge conditioned convolution Edge Features
EdgeConv3 (kernel net 16, ReLU activation) 100x16 EdgeConv2
edge conditioned convolution Edge Features
EdgeConvd (kernel net 16, ReLU activation) 10016 EdgeConv3
EdgeConvl
EdgeConv2
Concatenate concatenate 100x48 EdgeConv3
EdgeConv4
Pooling GlobalAttentionPooling 32 Concatenate
Dropout dropout (25%) 32 Pooling
Dense dense 32 Dropout
Activation ReLU activation 32 Dense
Classifier dense 4 Activation
Output softmax 4 Classifier

Tab. S9: Architecture for net 7 considered in the ensemble-prediction of Inter-
PepRank. The 4 classes are evenly distributed over the range 0 to 1 as
the net predicts the S-score normalized LRMSD (normalized with 4.0
LRMSD as 0.5).
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Name Layer Dimensions Input
Node Cons. Features input 100x42 -
Node Ligand Var. input 100x1 -
Amino Acid One-hot input 100x21 -
Edge Features Input input 100x100x4 -
Amino Acid Embed embedding 100x4 Amino Acid One-hot
Amino Acid Embed
Node Features concatenate 100x47 Node Cons. Features
Node Ligand Var.
Edge Features 2D dropout(10%) 100x100x4 Edge Features Input
edge conditioned convolution Edge Features
EdgeConvl (kernel net 8, ReLU activation) 100x8 Node Features
edge conditioned convolution Edge Features
EdgeConv2 (kernel net 8, ReLU activation) 1008 EdgeConvl
edge conditioned convolution Edge Features
EdgeConv3 (kernel net 16, ReLU activation) 100x16 EdgeConv2
edge conditioned convolution Edge Features
EdgeConvd (kernel net 16, ReLU activation) 10016 EdgeConv3
EdgeConvl
EdgeConv2
Concatenate concatenate 100x48 EdgeConv3
EdgeConv4
Pooling GlobalAttentionPooling 32 Concatenate
Dropout dropout (10%) 32 Pooling
Dense dense 32 Dropout
Activation ReLU activation 32 Dense
Classifier dense 2 Activation
Output softmax 2 Classifier

Tab. S10: Architecture for net 8 considered in the ensemble-prediction of Inter-

PepRank.
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2.1 Discussion on Architecture Performance

Most of the final network architectures performed similarly to each other, see
Figure S2, which is unsurprising considering most of them are based on the
same general architecture framework. The outlier of network 5 (Table S6) can
be explained by its small input size, only 50 considered residues compared to
100 for the other architectures. For some particularly large peptides in the test
sets, this means that the entire interaction-surface might not even be covered.
However, increasing the number of nodes up to 250 and above did not signifi-
cantly change the performance (data not shown). A more surprising difference
in performance is between network number 8 (Table S10) and 7 (Table S9). Net-
work architecture 8 is virtually identical to architecture 7, with the differences
of a less aggressive dropout during training and being a 2-class classifier rather
than a 4-class classifier. In fact, most of the networks acting as a multi-classifier
rather than a 2-class classifier shows markedly better performance, which can
probably be attributed to the fact that they have access to more data regarding
the targets during training, considering the more fine-grained representation of
the loss.

Networks 7 and 8 also implement a global attention pooling for their pooling
layers, rather than a global average pooling, but this change did not seem to
translate to any significant improvement in performance. Attention layers per-
form best with large amounts of varied data with inherent patterns, such as text
decoding or recognition of protein motifs in sequences, and it is possible that
their performance is limited here by the relatively low number of truly unique
positive decoy structures. All peptide-protein complex decoys are derived from
no more than 6,587 different complexes, and all positive decoys in the data set
are by definition structures which are similar to these, limiting the variation of
the data that can be learned.

This relatively low variance between positive decoys might also be a con-
tributing factor to why network architecture 6 did not achieve better perfor-
mance, even with a much deeper architecture and a learning scheme previously
shown to facilitate comparison in quality assessment. However, another reason
for this might be the small size of the interim layers, kept down by necessity
to keep the speed of the network reasonable for the evaluation of thousands of
decoys in minutes. As shown in Li et al. (2019), using residual couplings as done
in this work can allow for a considerably deeper network, but this might not
always lead to a boost in performance, especially not when not coupled with
wide layers and dilated convolutions.
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Fig. S2: AUC on validation targets for the different individual network archi-
tectures, the final ensemble method and an ensemble including all ar-
chitectures. The network architectures are numbered from 0 through 8,
and the ensemble methods are named after the included architectures.
The ensemble 0123478 shows optimal performance on the validation
data. A detailed description of the architectures and their differences
can be found in the Supplementary Information.
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3 Precision-Recall Curves

For every ROC-curve in the main paper, Figure S3 includes a corresponding
Precision-Recall curve.

ROC-curves measure predictive power independently of the bias in data
set labeling, making them suitable for cross-target comparison where different
peptide-protein target pairs yield different distributions of LRMSD of their de-
coy sets because of parameters such as receptor size, peptide size, or general
success or bias of the docking method, and making analysis of heavily biased
data sets easier. Precision-Recall curves on the other hand provide an abso-
lute metric of performance. Because of the inherently different distributions of
LRMSD of decoys generated from different target pairs, the individual curves
in the sub figures of Figure S3 are not comparable to each other, but they are
included here as a frame of reference of what kind of performance can be ex-
pected when applying the analyzed methods on decoys generated by fast-fourier
docking.
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Fig. S3: Precision-recall-curves for the different methods, each target is repre-
sented by 1 curve, and a violin-plot over the distributions of AUCs
(average percisions). The area under the curve (AUC) displayed in the
graphs is the average and median over all targets.

4 Disordered Peptides

The full set of complexes in the dataset was divided into a ”disordered” and
”ordered” set based on how much of the peptide in each complex was predicted
to be disordered when unbound by DISOPRED Ward et al. (2004). A peptide
was considered disordered if at least 75% of it was predicted as disordered when
unbound. Conversely, a peptide was considered ordered if no more than 10% of
it was predicted as disordered when unbound. Differences in AUC distribution
is visualized in Figure S4.
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Fig. S4: Differences in AUC distribution for peptides predicted to be disordered
when unbound and those predicted to be ordered when unbound.

5 Expanded Analysis test set

With a decrease in test set size, computationally heavy re-scoring methods like
pyDock3 or Rosetta FlexPepDock scoring-mode can be included in the compar-
ison. See Figure S5 for an analogue to Figure 4 of the main paper.

Using Rosetta FlexPepDock scoring mode only to re-score rigid-body docked
decoys proved slow, even without any refinement, as was discussed in the main
paper. Since the Rosetta scoring function is a fine-grained function developed
for protein refinement and design, it makes sense it would perform poorly on
structures not necessarily optimal by the Rosetta standard. Indeed, when using
Rosetta to score structures, it is common practice to first relax the structure
through the Rosetta Relax protocol, something which would considerably add
to the run-time if attempted in this situation.
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Fig. S5: ROC-curves for all methods discussed in the main paper, including
pyDock3, and a violin-curve summarizing all AUCs, for the Expanded
Analysis set (a randomly selected set of 50 targets all methods were
run on). Each target is represented by 1 curve. The area under the
curve (AUC) displayed in the graphs is the average and median over
all targets.
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6 Decoy Distribution

In Figure S6 are some graphical representations of the LRMSD distributions
of decoys selected by the different scoring methods for refinement. Results are
only shown for the set all methods were run on.
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g. S6: Distribution of LRMSD of decoys selected for refinement by the differ-
ent methods. Results shown for the Expanded Analysis set. In (a), all
decoys at LRMSD 404 were summed into the 40 A bin. In (c), the me-
dian number of models of the different quality-measures produced per
method per target after refinement for all methods and targets in the
Expanded Analysis set are shown binned by AUC on original decoys,
to highlight that good performance on the rigid-body docked decoys
translates to well-refined models.
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Fig. S7: (a) Distribution of InterPepRank errors for decoys generated by differ-
ent docking algorithms for the Expanded Analysis Set. (b) Distribu-
tion of AUCs for InterPepRank scoring of decoys generated by different
docking algorithms for the Expanded Analysis Set.

7 Bias Towards Different Docking Algorithms

Figure S7 shows the distribution of error of InterPepRank over decoys generated
by different docking algorithms.

8 Interface complexity bias

As can be seen in Figure S8, all investigated methods except for InterPepRank
shows a slight decrease in performance when the contact order of the true bind-
ing site is low. This indicates that if the binding site consists only of continuous
stretches of the receptor, as is the case with S-sheet reinforcement, the other
methods investigated will see a small but significant decrease in performance. In
fact, if only interfaces with high-contact-order native peptide-binding interfaces
are investigated, the performances of DFIRE and InterPepRank cannot be said
to be significantly different.

Contact order is here calculated by, for each residue in a given set of residues,
calculating the average distances between these residues in sequence. Any dis-
tance above 10 is counted as 10 instead. For example, if we calculate the contact
order for a set of residues positioned along one side of an a-helix, that set would
then have a contact order of approximately 3.6 as there are around 3.6 residues
per turn in most a-helices.
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Fig. S8: Distribution of AUCs for different targets separated by whether the
true binding site has a contact order larger than or equal to 3 or not.
This cutoff was selected as an interface encompassing one side of a helix
(similar to a coiled coil structure) would yield a contact order of slightly
above 3 and interfaces mainly composed of 3-sheet reinforcement would
yield a contact order of around 1.

9 Remote Homologs and Similar Interface

The test, validation, and training sets are separated by both sequence identity
as well as CATH superfamily of the receptor. Still, there exists a possibility
for remote sequence homologs being present in the training set, undetectable
by sequence identity. Additionally, while two proteins belonging to the same
CATH superfamily means they share overall topological features in excess of a
demonstrable evolutionary relationship, this does not necessarily mean that two
proteins which do not share CATH superfamily cannot share some structural
motifs, such as similar interfaces.

The core idea of a machine learning method is that it should be able to
make use of and generalize over remote differences, but a problem arises if,
rather than finding a general solution, the machine learning algorithm simply
stores training target information like a look-up table. In this case, rather
than demonstrating generalizability over novel datapoints, a machine learning
algorithm would in effect work like a template based method or simple k-nearest-
neighbors approach where it can look through its stored look-up table for the
most similar previous case and use it as a reference. If a machine learning
method has failed to generalize, its performance will risk being over-estimated
when the test set contains targets with remote similarity to individual targets
in the train set.

Similarities between targets in the test and train sets were investigated to
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infer whether InterPepRank was truly able to generalize over targets or if the
information stream between sets was too great, which would result in Inter-
PepRank working like a template-based method and not being able to generalize
to novel complexes. To this end, every receptor in every test set was compared
to all receptors of their respective training sets.

9.1 PSSM-PSSM similarity

Firstly, the PSSM-profiles of all test targets were pairwise aligned to all training
data PSSM using palignp Ohlson et al. (2004) and E-values were generated by
fitting Gumbel-distributions to the score distributions of aligning random PSSM
for every target, similarly to Gao and Skolnick (2010), and adjusting for database
size. By this analysis, no test target had any PSSM-PSSM significant match
(E-value < 1073) in its training set.

9.2 Interface similarity

Secondly, the interfaces of every test complex was compared to every train
complex using iAlign (Gao and Skolnick (2010)). In this case, 10 targets in
the test set matched to different targets in their training sets with E-values
less than or equal to 1073, indicating that for these 10 out of 687 targets,
there was a template for interaction available in its training set for use in a
k-nearest-neighbor like approach. However, the ROC AUC for InterPepRank to
select correct decoys for each of these 10 targets was not significantly different
from its performance on targets without any such similarities (p-value > 0.17),
nor could any correlation between interface similarity between a target and its
training data and InterPepRank performance be proven (p-value > 0.67).

9.3 Representative Set Annex

In Table S11, the 687 peptide-protein complex representatives utilized as true
native structures in this study can be found.
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law8BA 1bc5AT 1bgyJK lemxCD leqtBJ lezyAD 1d4wAC 1dkdDH 1e91AB
leakDR leg4 AP lejhAE lelwAC lemuAB 1f47BA 1f59AC 1gOyRI lgagAB
lgxcDE 1gy3CF lhesAP 1hqqCG 1hr8HR 1htmFE 1i40AC 1i51DF 1ilgAC
lisqAB 1j2xAB 1jd6AB 1jdpAH 1jm4BA 1jmtAB 1jw6AB lkerLP 1ky7TAP
11j2AC 11jzAB 1mO6FJ 1mk9DA In7fBD InltAB 1npgAB 1nx0AC 1o00pAB
lom9BQ lozsAB 1p16BD 1pu9AB 1q0wBA 1qd6DB 1rfiAC 1rpqAW lrxmAB
1szaBZ 1t0jBC 1t2vAF 1tn6BC 1tqeQX 1tt5BE 1ttwAB 1twbAC 1ty4BD
1vf5CG 1lvppVX 1w70AC 1lyrkAB 1lywhMN lyypAB 1z3mES 127234 1z90DJ
1zkkBF 2a40AC 2a4jAB 2aTuBA 2aucCD 2buoAT 2c5iTP 2cciDI 2ce9AX
2cnmAD 2cnzAB 2dohXC 2dvgBQ 2dymAB 2f69AB 2f9uAB 2fffBA 2fmkAB
2fymDE 2g46AC 2ggmBD 2ghtBD 2h1cAB 2hdxEK 2hu2AB 2hwfld 2hzsFK
2ibfAD 2ifrAB 2isqAB 2j2897 2jbyAB 2jdIAC 2jktIQ 2jmjAP 2jz3CA
2k17AP 2k9uAB 2kbmAX 2knhAB 2kqfAB 2kqsAB 2krbAB 2ks9AB 2kxcAB
2kxqAB 2kzuAB 210yAB 2l11cAB 216eAB 2lbmAC 2lcsAB 2lctAB 2lozAB
21p0AB 21skAB 2lspBA 2lsrAB 2lsvAB 2lxsAB 2makAB 2mc6AB 2mkcAB
2mnjBA 2mowAB 2mv7AB 2mwoAB 2mzdAB 2n01BA 2n0yAB 2n3kAB 2nnuAB
2ns8AE 2nudBD 2p0wBQ 2p5bAT 2pehAC 2phkAB 2pieAF 2pnxCD 2pqnAB
2pv2BE 2pv3AC 2pvcBD 2q6gAC 2qasAB 2qiyAC 2qmeAT 2qqgAB 2qqsAD
2r9gBY 2rquAB 2rqwAB 2rr4AB 2rt5AB 2v2fFA 2v86BD 2v8fBC 2vdoAC
2vzgBA 2w2uBD 2w6jHI 2w84AB 2wa8AB 2wo6BC 2x04BD 2x39AC 2x4yOP
2xc8BC 2xjzCK 2xpoCD 2xpxAB 2xqnTA 2xs0AB 2xvcAB 2xxnAB 2xzeBR
2y65CW 2ybfAB 2ykaAB 2yktAB 223fCK 2zjdAB 3a0ben 3aaelV 3aaelV
3agzAC 3al3AB 3aloAE 3aslAB 3auwBA 3bimDK 3bgoAB 3brfAD 3bzxBA
3c01HD 3cO0tAB 3chxJL 3cxwAB 3cyyAD 3d1fBQ 3d8aDS 3d9nBZ 3dabEF
3dd7AB 3dktCM 3elkEF 3e2bAC 3e2uCG 3echBC 3ehuAC 3er5EI 3eu7AX
3eyfBE 3f1iSC 3f20AC 3fd1AB 3fksPR 3fxxAB 3g2uAC 3gTIAP 3g7zAC
3ggzBF 3gjoCG 3g16AB 3gm1AE 3g21AQ 3h1zAP 3h52AN 3hdiBD 3hymHG
3i5rAB 3iaxAB 3iciAC 3ik5AB 3iswAC 3izoBG 3j47VQ 3j47US 3jc21lw
3ja5AB 3jgolm 3juaGH 3jwrBD 3k48AS 3kzeCE 3l16yAB 3lcnAC 3lgeBF
3liyEK 3lm11J 3mazAB 3mk4AB 3ml4CG 3mpjBY 3n5eBD 3nalBD 3nk4AC
3nmxBE 300eFQ 3042AB 30e0AT 30lrAE 30szAB 3p72AB 3pbpDF 3pcsAE
3pedAB 3pluAC 3pqrAB 3q47BC 3q6sCE 3qbrAB 3qisAB 3qksAC 3rohDd
3r42AB 3r7gAB 3r9iCH 3rqeCE 3rqfAE 3sj9AB 3s19BD 3swcAP 3t7gAC
3tdiBC 3tduAF 3tdzBF 3twwBD 3tz1AB 3tzxBC 3uljBA 3ubnAC 3u7dCD
3ubwAP 3ueoDE 3um2AB 3upvAB 3vivBC 3w6kCA 3wbnAB 3wplBA 3wuuAC
3wxaAC 3zfwBY 3zhaDJ 3zilAB 3zrjAX 3zrzAC 4algDH 4a2aBD 4a62AC
4ajyVH 4aktAC 4am9AB 4au7AC 4b45AB 4b60AC 4bh6GO 4bj6CD 4blODF
4bq6FE 4bqdBD 4btaAC 4bulAC 4bwsDE 4bxrAC 4bxwAF 4clqAC 4c31EF
4c5iAC 4cc9BC 4ccoBD 4cfhBC 4chbBD 4cugBF 4cydBF 4dayAC 4dcbAF
4dowAC 4dxrAB 4eqfAB 4ezvAC 4f02DF 4fbwBD AfifAC 4flInBE 4fsjBE
4g2vAB 4geqCE 4gneAB 4gq6AB 4gx1AB 4hOhBD 4h2tAC 4h3hEF 4h62QK
4hrhAC 4htpAC 4i7TbAB 4igaAB 4iimAC 4ikaAD 4imiDF 4irvBF 4isrBE
4iuuBC 4j1vCF 4j2¢CD 4j21AC 4j8sAB 4jhkAC 4jifAB 4jmhAB 4jmrCH
4jo8AB 4jolDH 4jqiAV 4kOuAB 411uCH 417xAU 4lebAB 41k9AB 4lnpAB
4m5sAB 4m6bDF 4mi8BD 4mliAB 4mzgBA 4mzjAT 4n4hAB 4nawAD 4nb3AC
4nf9BD 4nuvAC 40bhCF 40d7AD 40dlAD 40i4CD 4oucAB 4o0ykAC 40z1BC
4pi0KN 4piqAB 4psiBE 4pyuAC 4q5uAC 4q96EC 4qaeFU 4gbrCE 4qeocAP
4qmfDC 4qmgEJ 4qxbAE 4rdnAa 4reyAB 4rigDF 4rqiBF 4rrvAB 4s0rLS
4tk4BC 4tknAD 4tmpAB 4tt3EJ 4tvqCE 4txqBD 4tzoEF 4u39GP 4uby AP
4uT7iAB 4uflAB 4um9DF 4uqyAB 4uwxAC 4ux6BA 4w4zBF 4w5aBD 4wjTAW
4wipAB 4wphBC 4wsfAB 4wzxAE 4x20AC 4x3hAB 4x8pAB 4xevAC 4xgrGH
AxtrAG 4xviHA 4yl6AB 4yosAE 4ywcBD 4yzhAB 4z0rBD 4z2pBC 4zbjBD
4znyAB 4zoxAB 4zozAY 4zqwBA 5a53AB 5a5bRY 5aerAC 5ajkCD S5awuAB
5bdawDJ 5c5eAH 5c7fDH 5cqyAC 5cvdBE 5dahAD 5de2AC 5di8AC 5dxaAF
5e4wDF 5efiAC 5eftBA 5en7CD 5evOBD 5f0pBD 5f5vDF 5f67AC 5fgcEA
5fjwAL 5fm3BG 5fpxBF 5frqAG 5ft1GH 5fviIBC 5fw5AC 5fzt AB 5gk9AB
5glfCD 5gowBA 5gtbAB 5gtuAB 5h5qAB 5h7yAB 5h9dBL 5hawBK 5hkhAB
5hkyAB 5hoiAD 5hvzAC 5i22AB 5ig9AIl 5ii0CF 5itzBD 5ix2BQ 5ixdAB
5j3hEB 5jcyAB 5jelAB 5jmeBF 5jnbDH 5jtpCG 5k2mIM 5kc1LK 5koaBD
510y CI 5lasBD 51ldeBR 51hzBE 5lm1AB 5lmgAD 51lmxGD 51sjCQ 51ly3AB
5mO0jCI 5mb5sBH 5m72AB 5m9eAE 5mf9AB 5mfgAE 5mgxFA 5mk1CH 5mu3BC
5mx2zy 5n22AE 5nc7Al 5nl1AH 50akCD 50jrAE 50k6BC 50kzGJ 50nbAB
50onsAB 5006TU 50vpAB S5oxwAH 5supBG 5swfAB 5t0qAB 5tgiBD 5tzqBC
5ulgDK 5ulmAB 5uabAB 5v1dCF 5v1itAB 5v90CD 5va6AC 5vaocAF 5vb9BD
5vklAB 5vmoAB 5vwvAB 5vzuBE 5w2jBF 5w4sAB 5w93AD S5wad AM 5waiBD
5wbhDW 5wggAB 5wknBD 5wriAD 5wtbAE 5wvoCD 5xfqBF 5xjr2M 5x0dAB
5xpuAB 5xsqCD 5xtbIW 5xtbQW 5xvwEF 5xxfAE 5xyfAB 5y59BC 5y7wBD
5yc4AP 5yf4AB 5ygfAD 5yt0AB 5zfuBH 5znrBQ 5z00GA 5zt0BI 5229AE
6a5eDF 6ak2AD 6am0AC 6am0BC 6b0xDd 6b2zMT 6b3xAB 6b9hAB 6bheAB
6c0aAB 6¢cnlGS 6d6rFJ 6dcnAD 6deiAC 6drtBE 6ef31n 6eiwBD 6et51y
6f6dAB 6f8gAE 6fbkAP 6fkqAB 6f02BI 6g0yAJ 6g84BC 6gbeAB 6gd5AB
6gfqBC 6gos1A 6gqnBC 6gvIAB 6gy2AD 6h41AB 6h9jAD 6h90CD 6ha6AD
6hboAB 6he5GL 6hksAG 6hosBC 6hquFN 6hy2XA 6i5nAT 6ic4AB 6ituAB
6iuiAD 6ixpDE 6j0wAC 6j6hTn 6j8nBA 6jjzBD 6jx3BA 6mhfAC 6mlcCF
6n3eAB 6n87AC 6n9xAF 6nj8CF 6njgCB 6nnvCK 6ocpCP 60i4AE 6oswAB
6punCF 6q36BD 6qcgAH 6qnpCJ 6qxfMN 6rh6AB 6rr0OBI 6rrcCB 6s07AC
6s1rAB 6s3fAB 6s8nFC

Tab. S11: 687 peptide-protein complexes.
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