
1 Supplementary material

1.1 Architecture of the ConGen backend

Python Module Structure All of the python files are contained in a package
named vicogen. The NeuroML files are handled in the neuroml subpackage.
The modules in the neuroml package are intended to hold the data structures of
the translation and parsing NeuroML files. The module parsing.py contains all
the functions for parsing NeuroML files into the data structures. The vicogen

package itself contains a few different modules:

• vicogen.py contains functions for accessing the file parsing from the
neuroml package, starting simulations with NEST and printing connec-
tivity matrices and lists to the console or to file. All of the functions in
this module are made available on a package level.

• nest.py is the module responsible for connecting the translator to the
simulator NEST. It provides functions for translating populations and
calling the CGI-Functions for NEST, and also starting simulations.

• tvb.py is the module responsible for connecting the translator to TVB.

• main .py is a required file for using the package by itself on a command
line. It allows the package to be called like a module using python -m

ConGen PARAMETERS.

• commands.py provides the command arguments that can be used when
calling the module from a command line.

• init .py is called when vicogen is imported as a python package. It
gathers all the functions from the other modules and provides them on a
package level.

The vicogen package can be used either as a normal python package using
import vicogen or executed as a python file with command lines for quick
access (See supplementary material in Section 3).

The modules in the vicogen package are written to ensure minimum depen-
dencies between each other. For example, new simulators can be added easily
as all references to NEST and TVB are contained in the nest.py and tvb.py

modules respectively].

Class Structure To represent NeuroML in Python in a way that is ex-
tensible and maintainable, the class structure makes use of inheritance and
“duck typing”. For example, all connectivity pattern classes are subclasses
of the ConnectivityPattern class, which has an empty function mask() that
all subclasses have to implement. This makes it easier for developers to see
which functions they need to implement to add a new pattern. Fig. 1 shows a
class diagram of all the classes represented in the neuroml package. All con-
nectivity patterns are subclasses of ConnectivityPattern and Projection.
Adding a new connectivity pattern can be done by creating a new subclass of
ConnectivityPattern and assigning a CSA mask to self. mask in the init

method. Similarly, new subclasses can be created to add new distributions, neu-
ron position functions, and inputs.

1

Figure 1: Class diagram of the neuroml package.

1.1.1 Changes to NeuroML

Some additions and changes had to be made to the NeuroML XSD schema for
our use cases. All additions and changes are listed and described here.

One-To-One Connectivity Of the common elementary connectivity pat-
terns, NeuroML is missing the One-To-One connectivity. Since a one-to-one
connection does not need any parameters, adding it to the XSD Scheme is triv-
ial:

<xs : e l ement name=” one to one ”>
<xs:complexType />

</ xs : e l ement>

While the One-to-One connectivity may not be common for biological networks,
it is important for connecting inputs and recording devices.

Atlas based Connectivity The atlas based connectivity allows users to spec-
ify connectivity between a set of nodes using data in the form of a connectivity
matrix. The parameter connectivity matrix indicates the name of a zip file
which includes the weights and the tract lengths in form of CVS files. Both the
weights and the tract lengths data structures are NxN matrices where N is the
number of nodes to be connected.

The atlas based connectivity is described in the XSD Scheme as follows:

<xs : e l ement name=” a t l a s b a s e d ”>
<xs:complexType>

<x s : a t t r i b u t e name=” c o n n e c t i v i t y m a t r i x ” type=” x s : s t r i n g ”/>
</ xs:complexType>

</ xs : e l ement>

2

Input Sites In NeuroML, an input is connected to a population by defining
an input site. The sites function the same way as projections, as they can con-
nect an input to a population using either a connectivity pattern or connection
instances. Since using an input site is the same as connecting an input through
a projection, this creates an unnecessary redundancy in the file structure. New
connectivity patterns would have to be created for projections as well as for
inputs. To avoid the redundancy and additional workload, input sites are not
supported by the parser. Instead, inputs are connected the same way two pop-
ulations would be connected: With a projection where the source is interpreted
as a population with size 1. This makes the file format easier to maintain and
expand, and also simplifies the parser.

Spatial Connectivity In order to be able to support spatial connectivity,
being Gaussian the most used at network scale neuroscience, two new XML
structures for Gaussian spatial connectivity in 2D and 3D have been added to
the NeuroML file format.

<xs : e l ement name=” g a u s s i a n c o n n e c t i v i t y 2 d ”>
<xs:complexType>

<x s : a t t r i b u t e name=”sigma” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=” c u t o f f ” type=”meta:NonNegativeDouble”/>

</ xs:complexType>
</ xs : e l ement>
<xs : e l ement name=” g a u s s i a n c o n n e c t i v i t y 3 d ”>

<xs:complexType>
<x s : a t t r i b u t e name=”sigma” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=” c u t o f f ” type=”meta:NonNegativeDouble”/>

</ xs:complexType>
</ xs : e l ement>

Both XML elements have the parameters sigma and cutoff. The sigma param-
eter controls the size of the Gaussian that is used for calculating the probability
of a connection. The cutoff parameter can be used to set the maximum dis-
tance a point can have to the center of the Gaussian. With this addition to the
XML structure, a Gaussian spatial connectivity can now be given as follows:

<c o n n e c t i v i t y p a t t e r n>
<g a u s s i a n c o n n e c t i v i t y 2 d sigma=” 1 .5 ” c u t o f f=”3”/>

</ c o n n e c t i v i t y p a t t e r n>

The positions of the neurons can already be defined in NeuroML by either giving
a position element to all neuron instances, or by adding a <pop location>

element to a template based population. The neuron locations in NeuroML are
always three dimensional. When using 2D spatial connectivity, the value for the
z dimension is ignored.

Adding these two structures provides simple spatial connectivity for 2D and
3D populations, but more advanced forms of spatial connectivity are still miss-
ing. Additional features may be scaling and translating of neuron positions, or
even generic projection functions. Generic projection functions are supported
in CSA, but have no equivalent in NeuroML.

3

Figure 2: Gaussian spatial connectivity on two 2D-Layers. The neuron to con-
nect from the source layer gets projected onto the target layer using an arbitrary
mapping function (blue dots). The distance metric from CSA gets applied to
a Gaussian sampler (red circle), resulting in Gaussian local connectivity (red
dots).

Distributed Synaptic Parameters When describing connectivity parame-
ters, e.g. synaptic weights or delays, NeuroML only provides static values. Only
instanced connections can have individual parameter values. For connectivity
patterns though, NeuroML provides no way of giving each connection in the con-
nectivity pattern a different value. All connections in the connection pattern
share the same static value for their parameters. A solution to this is using distri-
butions for parameters. To accomplish this, a new DistributedProperty com-
plex type has been added to the XSD Scheme. A distributed property can hold
one of the defined distributions: GaussianDistribution and UniformDistribution.

<xs:complexType name=” Dis t r ibutedProper ty ”>
<x s : c h o i c e>

<xs : e l ement name=” Gauss i anDi s t r ibut ion ” type=” Gauss i anDi s t r ibut ion ”/>
<xs : e l ement name=” Uni formDist r ibut ion ” type=” Uni formDist r ibut ion ”/>

</ x s : c h o i c e>
</ xs:complexType>

<xs:complexType name=” Gauss i anDi s t r ibut ion ”>
<x s : a t t r i b u t e name=” cente r ” type=” xs :dec ima l ” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=” dev i a t i on ” type=” xs :dec ima l ” use=” requ i r ed ”/>

</ xs:complexType>

<xs:complexType name=” Uni formDist r ibut ion ”>
<x s : a t t r i b u t e name=” lower ” type=” xs :dec ima l ” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=”upper” type=” xs :dec ima l ” use=” requ i r ed ”/>

</ xs:complexType>

A distributed property can be defined inside a synapse props block of a projec-
tion. So far, only weight and delay are supported, as the CGI implementation
in the libneurosim package only supports weight and delay parameter for now.

4

<x s : a l l minOccurs=”0”>
<xs : e l ement name=” weight ” type=” Dis t r ibutedProper ty ”/>
<xs : e l ement name=” delay ” type=” Dis t r ibutedProper ty ”/>

</ x s : a l l>

The Gaussian distribution defines a center and a deviation, which correspond to
µ and σ of a Gaussian. The uniform distribution has an upper and lower bound
and gives an even probability for every value between these bounds. Adding a
new distribution can be done in XSD by adding it to the DistributedProperty
complex type. New types of distributed parameters can be added in the SynapseInternalProperties
complex type as a DistributedProperty. An example for distributed param-
eters as child elements in a NeuroML file can be seen here:

<synapse props synapse type=” Stat i cSynapse ” th r e sho ld=”−20”>
<weight>

<Gauss ianDi s t r ibut ion cente r=” 87 .8 ” dev i a t i on=” 8 .8 ”/>
</ weight>
< i n t e r n a l d e l a y>

<Uni formDist r ibut ion lower=” 0 .5 ” upper=” 1 .5 ”/>
</ i n t e r n a l d e l a y>

</ synapse props>

The distributed properties are entirely optional and synapse properties can still
be defined as an attribute of <synapse props> instead of a child element. Alter-
natively, a static value may also be given as a child element of synapse props

for weight and delay, making it a possible replacement for the old way of writing
parameters. It would have been possible to encode the distributed parameters in
the string attributes of the synapse props element, which would have required
no changes to the XSD, but this would also make it impossible to check the
validity of the elements using XSD. Additionally, encoding distributions as a
string would introduce a structural inconsistency to the NeuroML format which
would make it difficult for parsers to correctly parse the NeuroML files.

These NeuroML extensions were necessary as NeuroML’s connectivity defi-
nitions for large networks is limited. Dynamically creating connectivity patterns
similar to CSA is not possible in NeuroML, and distributed properties are not
supported. The only way to recreate spatial connectivity or distributed synapse
parameters is by computing the patterns or distributions before writing the
NeuroML file, and using NeuroML’s connection instances instead. This would,
especially for large networks, increase the file size of the NeuroML files dramati-
cally. NineML does inherit these problems, although it does support distributed
parameters.

5

2 Installation Instructions

2.1 CSA and NEST with CGI

1. Install autoconf using sudo apt-get install autoconf

2. Clone and install libneurosim:

g i t c l one https : // github . com/INCF/ l ibneuros im . g i t
cd l ibneuros im
. / autogen . sh
. / c o n f i g u r e −−p r e f i x={ l i b n e u r o s i m i n s t a l l p a t h }
make
make i n s t a l l

3. Install csa:

g i t c l one https : // github . com/INCF/ csa . g i t
cd csa
. / autogen . sh
. / c o n f i g u r e −−with−l i bneuros im={ l i b n e u r o s i m i n s t a l l p a t h }

−−p r e f i x={ c s a i n s t a l l p a t h }
make
sudo make i n s t a l l

4. Install NEST:

g i t c l one https : // github . com/ nest / nest−s imu la tor
cd nest−s imu la tor
cmake . . −Dwith−l i bneuros im={ l i b n e u r o s i m i n s t a l l p a t h }

−Dwith− l t d l
make
sudo make i n s t a l l

5. Install TVB:

Please f o l l o w the i n s t r u c t i o n s in :
$https : //www. t h e v i r t u a l b r a i n . org / tvb/ zwei / bra ins imulator −so f tware ?\ ga =2.147069872.667575068.1634637426 −1014916751.1515690194 $

6. Install NeuroScheme: The version of the ConGen domain in NeuroScheme
used for this manuscript can be found in this repository under the congen
branch: https://github.com/multiscale-cosim/NeuroScheme.git

Installation instructions can be found in the repository as well.

2.1.1 Starting ConGen

To start the interactive connectivity generation, use ./NeuroScheme -d congen.
To run the backend

6

2.2 Installing the ConGen backend

The ConGen back end code and the files used for the different use cases can be
found in this repository: https://github.com/multiscale-cosim/ConGen.git

The Python package does not need to be installed to be used, but can be
added to your Python libraries. In the ConGen root, execute:

mkdir bu i ld && cd bu i ld
cmake . .
make
sudo make i n s t a l l

2.2.1 Environment configuration

Add nest-simulator site-packages, vicogen, vicogen/neuroml and csa installation
folders to $PYTHONPATH.

7

3 ConGen backend usage instructions

ConGen backend can be used independently of the GUI. The ConGen package
can be imported in Python using import vicogen. Alternatively, ConGen can
be used directly from the console by executing it as a Python module in the
command line.

python −m vicogen [−h] [−o [OUTFILE]] [− t SIMTIME] [−c]
[−d] [−v] [−m m u l t i s c a l e]
[−b s imu la t e w i th tvb]
[−n s i m u l a t e w i t h n e s t]
[−−nest−opt ions NEST OPTIONS]
[− l m u l t i s c a l e l a b e l s]
m o d e l f i l e

modelfile is the NeuroML file to be parsed and has to be given. The module
supports the following command line arguments:

To run and simulate for 100ms the use case 1 files provided in the ConGen
repository execute:

python3 −m vicogen −v −n True −t 100
{Path to ConGen}/ConGen/ Front ie r s2021manuscr ipt /
nml/ p d f i n a l . xml

To generate the Cosimulation files for a simple example in the repository
execute:

python3 −m vicogen −m True −n True −b True −v
{Path to ConGen}/ConGen/ Front ie r s2021manuscr ipt /
nml/ UC3 s imple mul t i s ca l e . xml

To generate the Cosimulation files for the second use case files in the repos-
itory execute:

python3 −m vicogen −m True −n True −b True −v
{Path to ConGen}/ConGen/ Front ie r s2021manuscr ipt /
nml/ UC2 f ina l . xml

Argument Description
-h, --help Shows a help message on the usage.
-o [OUTFILE], --outfile [OUTFILE] Set the file to write output to. If not given, the

output is written to stdout.
-t SIMTIME, --SIMTIME Simulate the model for a given amount of millisec-

onds.
-c, --write-connections Instead of simulating the network, parse the connec-

tions and write them to output.
-n, --nest Simulate with NEST.
--nest-options NEST OPTIONS Additional options for NEST.
-b, --tvb Simulate with TVB.
-m, --multiscale Generate EBRAINS co-simulation scripts for multi-

scale models.
-l, --multiscale-labels Labels to split the NeuroML model into scales.
-d, --debug Print debugging information.
-v, --verbose Print verbose messages.

8

4 ConGen supported cell types

The currently supported cell types in the ConGen front end are: ”iaf psc alpha”,
”cell”, ”cell2CaPools”, ”baseCell”, ”iafTauCell”, ”iafTauRefCell”, ”iafCell”,
”iafRefCell”, ”izhikevichCell”, ”izhikevich2007Cell”, ”adExIaFCell”, ”fitzHugh-
NagumoCell”, ”fitzHughNagumo1969Cell”, ”pinskyRinzelCA3Cell”, ”nmm kuramoto”,
”nmm 2doscillator”, ”proxy” and ”undefined”.

9

	Supplementary material
	Architecture of the ConGen backend
	Changes to NeuroML

	Installation Instructions
	CSA and NEST with CGI
	Starting ConGen

	Installing the ConGen backend
	Environment configuration

	ConGen backend usage instructions
	ConGen supported cell types

