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Derivation of predictive learning rule.  

Intuitively, it makes sense that planning, i.e. making educated predictions, can improve 

the success of organisms in accessing more energy resources. Making good predictions can also 

allow to better solve complex tasks (Chalmers et al., 2017). Below we outline the main steps of 

the derivation, which shows that for a single neuron, maximizing metabolic energy is best 

achieved by predicting future activity [for details see (Luczak et al., 2022)]. Energy supplied to 

neuron j (Eb) comes from local blood vessels controlled by the combined activity of local 

neurons, which can be described as: Eb = 𝑏2(∑ 𝑥𝑘,𝑡+𝑛)𝛽2 𝑘  , where xk represents spiking activity 

of neuron k from a local population of K neurons (𝑘 ∈ {1, … , 𝑗, . . . 𝐾}), t represents current time, 

n is a small time increment, β2 describes a non-linear relation between activity and energy 

(Devor et al., 2003), and b2 is a proportionality constant. Similarly, energy used on electrical 

activity can be written as a power function of the sum of its synaptic inputs: Eele =
 𝑏1(∑ 𝑤𝑖𝑗𝑥𝑖,𝑡+𝑛)𝛽1

𝑖   (Devor et al., 2003; Luczak et al., 2022).  Note that in this derivation x does 

not refer specifically to the clamped phase but rather to neuron activity in general (we will make 

a connection to clamped activity at the end of this section). Cellular housekeeping cost Eh is here 

considered to be a constant. Therefore, the equation for energy balance for a neuron j can be 

written as:  

(Eq. S1): E j = Eb – Eele – Eh =  𝑏2(∑ 𝑥𝑘,𝑡+𝑛)𝛽2 𝑘  − 𝑏1(∑ 𝑤𝑖𝑗𝑥𝑖,𝑡+𝑛)𝛽1
𝑖  − Eh 

In simulations and in experimental data we showed that for small n, the activity of neuron j at 

time t+n could be approximated by a linear function of its activity at earlier time step t, such as: 

𝑥𝑗,𝑡+𝑛 =  𝜆𝑗𝑥𝑗,𝑡, where 𝜆 is a regression coefficient (Luczak et al., 2022). Thus Eq. S1 can be 

rewritten as  

(Eq. S2): E j =  𝑏2(∑ 𝑥𝑘,𝑡+𝑛 +  𝜆𝑗𝑥𝑗,𝑡)𝛽2 𝑘≠𝑗  − 𝑏1(𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡)𝛽1
𝑖   − Eh 

Using the gradient ascent method, we can calculate the change in weights to maximize energy 

balance: 

(Eq. S3): ∆𝑤𝑖𝑗 = 
𝜕𝐸𝑗

𝜕𝑤𝑖𝑗
 =  𝑥𝑖𝜆𝑗𝛽2𝑏2(∑ 𝑥𝑘,𝑡+𝑛 +  𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡𝑖 )𝛽2−1 𝑘≠𝑗   

− 𝑥𝑖,𝑡𝜆𝑗𝛽1𝑏1(𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡)𝛽1−1

𝑖
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Note that in Eq. S3: 𝜆𝑗 ∑ 𝑤𝑖𝑗𝑥𝑖,𝑡 =  𝜆𝑗𝑥𝑗,𝑡 ≈ �̃�𝑗𝑖  , thus this term corresponds to predicted future 

activity: �̃�𝑗. We will also denote a population activity ∑ 𝑥𝑘,𝑡+𝑛 𝑘≠𝑗  as: 𝑥⏞ , which simplifies Eq. S3 

to: 

 (Eq. S4): ∆𝑤𝑖𝑗 =   𝑥𝑖𝜆𝑗𝛽2𝑏2( 𝑥⏞ + �̃�𝑗)𝛽2−1 −  𝑥𝑖,𝑡𝜆𝑗𝛽1𝑏1�̃�𝑗
𝛽1−1 

Considering experimental results from (Devor et al., 2003) and computational results from 

(Luczak et al., 2022), we can use β1 = 2 and β2 = 2, which allows to simplify Eq. S4 to: 

(Eq. S5): ∆𝑤𝑖𝑗 =  𝛼3 𝑥𝑖,𝑡 (𝛼4 𝑥⏞ − �̃�𝑗) ,           where 𝛼3 =  2𝜆𝑗( 𝑏1 − 𝑏2), and 𝛼4 =  
𝑏2

( 𝑏1−𝑏2)
   

In the equation above, 𝛼3 can be denoted as simply a learning rate 𝛼, and for notation simplicity, 

index t in  𝑥𝑖,𝑡 can be omitted as it refers to current time step. Moreover, local population activity 

𝑥⏞ provides synaptic inputs to neuron j, thus 𝑥𝑗 ≈ ∑ 𝑤𝑘,𝑗𝑥𝑘𝑘  ≈  𝛼4 ∑ 𝑥𝑘𝑘 ≈ 𝛼4 𝑥⏞. This suggests 

that the activity of a single neuron can be approximated from local population activity, which is 

supported by experimental evidence (Tsodyks et al., 1999; Harris et al., 2003; Luczak et al., 

2004; Luczak et al., 2009). Thus, equation for modifying synaptic weights could be expressed as:  

(Eq. S6): ∆𝑤𝑖𝑗 ≈ 𝛼𝑥𝑖 (𝑥𝑗 − �̃�𝑗) 

This shows that maximizing future energy balance requires a neuron to predict its future activity 

(�̃�𝑗). However, it should also be noted that although this analytical derivation of the synaptic 

learning rule provides a novel step to link predictive learning models to metabolic activity, it 

requires to greatly simplify the description of metabolic processes to only a few most important 

variables. The predictive learning rule presented here was validated in computer simulations 

(Fig. 3 and (Luczak et al., 2022)), but the biological accuracy of this simplified model and 

assumptions used in this derivation need further investigation. 
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Suppl. Figure 1. Neuronal surprise for a convolutional network trained with predictive learning 

rule on CIFAR-10 dataset. Plot convention is the same as in Fig. 3 in the main text. (A) Learning 

curve. (B) Change in neuronal surprise averaged over all neurons. (C) Neuronal surprise (proxy 

of skill consci.) vs accuracy (a.k.a. competence). Those results show that a convolutional 

network with predictive learning rule also shows behavior similar to stages of conscious 

competence.  

The details of this convolutional network were described in (Luczak et al., 2022), and code is 

available at: https://github.com/ykubo82/bioCHL/tree/master/conv . Shortly: the network had an 

input layer of size: 32x32x3, corresponding to the size of a single image with 3 color channels in 

CIFAR-10 dataset (this dataset consists of 5000 training and 1000 test images for each of 10 

classes (Krizhevsky and Hinton, 2009)). The network had two convolutional and pooling layers 

followed by one fully connected output layer. The filter size for all the convolutional layers is 

3x3 with stride 1, and the number of filters is 256 and 512 for the first and second convolutional 

layers, respectively. This network with predictive learning rule achieved test accuracy of 79.97% 

(chance level: 10%), which is comparable accuracy to training the same network with 

backpropagation through time algorithm (79.12%) (Luczak et al., 2022). 

  

https://github.com/ykubo82/bioCHL/tree/master/conv
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Suppl. Figure 2. Sample biochemical circuit determining decision in a phage (McAdams and 

Shapiro, 1995). This illustrates that biochemical interactions can perform complex computations 

comparable to electrical logic circuits.  
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Sample code for network with predictive learning rule and with neuronal adaptation. 

 

This code demonstrates how surprise is calculated to produce results presented in Fig. 3. To 

reduce simulation time, we present here a network with only 50 hidden units, and with the 

number of training epochs set to 300. We also reduced here the number of time steps for each 

stimulus presentation from 120 to 20, as compared to our previous work (Luczak et al., 2022). 

The predicted activity (�̃�) was calculated only from the first 5 time steps, and the clamped 

teaching signal was switched on at time step 8 (see Fig. 1B for illustration). To calculate a 

neuron’s predicted or expected activity, we used a linear function of its past activity: �̃�(t) = λ(1)* 

x(t-1),+…+ λ(n)* x(t-n) + constant, where x(t-n) is past activity at time step t-n, n is a maximum 

number of time steps contributing to the prediction, and λ(n) is a coefficient describing how past 

activity at time step t-n contributes to predicted activity at time t. We tested the validity of this 

linear formula in simulations and in experimental data (Luczak et al., 2022). Surprise is 

calculated as an absolute difference between clamped phase activity and predicted activity, and it 

is averaged over all neurons and all stimuli presented in a single training epoch (see supr_jj 

variable in code below). As maximum values of neuronal activity in our network are typically 

around 1, this sets the maximum limit for values of surprise. In Fig. 3 we presented results 

averaged over 100 simulations. In the code below, for purpose of demonstration we only run one 

simulation.  

 

The effect of neuronal adaptation on improving network performance will be investigated 

in detail in future work. However, it can be exemplified using the code below. To do so, the 

number of training epochs should be increased to 5000 (itr variable), and the value of adaptation 

set to 0.7 (adp variable). As adaptation reduces the difference between clamped and predicted 

activity, the learning rate can be increased to ~0.6 (ler_rt). For comparison, a network without 

adaptation (itr =0) could be best trained with learning rate: ler_rt = 0.015. To speed up 

computations we also set �̃� = 𝑥𝐹  (do_pred = 0) for both comparisons. This could be interpreted 

as neurons doing perfect predictions, where predicted activity is set exactly to the value of free 

phase activity. This is justified by our previous results showing that correlation between �̃� and 𝑥𝐹 

was R=1+0.0001 SD (Luczak et al., 2022). Using parameters described above we achieved a 

maximum accuracy of 96.3% for the network with adaptation, and 91.9% without adaptation on 

test dataset (cross-validation). Note that using networks with a relatively small number of 

neurons made the MNIST task more difficult for the networks to solve, thus making it easier to 

see differences in performance when using adaptation.     
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%%- Matlab code to reproduce results presented in Fig. 3  
% - author: Artur Luczak @ University of Lethbridge 
% - code is free to use and modify under MIT License 
% - It calculates surprise and adjusts neuron weights using predictive learning rule 
% - As input it uses MNIST dataset (LeCun et al. 1998) converted to .mat format 
% - This code and .mat data is available at: https://people.uleth.ca/~luczak/PredC/  

 
clear all; warning off 
  
itr = 300; %-- number of learning epochs 
ler_rt = 0.15; %-- learning rate  
adp = 0.1; %-- strength of neuronal adaptation; if adp=0 then no adaptation. Must be <1  
nr_exmp_cl = 400; %-  number of randomly selected examples for single training epoch (clamped phase) 
nr_exmp = 2000;  %- number of examples for free phase ( must be >= nr_exmp_cl ) 
nr_exmp_all = 2000; %5000 %- number of images from each MNIST class to store in memory 
dt = 0.8; %-- (1-dt) = influence of activity at previous step; if dt=1 then only current activity  
sym_w = 1; %-- if 0 then no symmetric weights; otherwise set it to 1 
recur = 0; %-- if == 1 then lateral connections within layer? (fully recurrent net) 
 
do_pred = 1; %-- if 1 then use predicted activity  
if do_pred == 0; nr_exmp = nr_exmp_cl; end 
pr_st = 5; %-- number of time steps to use for predictions  
%-- stim parameters  
t_clmp = 20; %-- number of time steps for each stim presentation  
t_dc = 8; %-- delay of teaching signal in relation to stim    
     
img0 = zeros(28,28); img0( 5:24,6:26) =1; % figure; imagesc(img0) 
f_img = find( img0(:) == 1 ); %-- find center region of img 
dns = 1; %-down sampling factor 
dat = zeros(nr_exmp_all*10,length(f_img(1:dns:end))); 
clas = zeros(nr_exmp_all*10, 10); 
  
for i=1:10 
  eval(['load ''digit' num2str(i-1) '.mat''']) 
  idxC = [1:nr_exmp_all]+nr_exmp_all*(i-1); 
  dat( idxC,:) = D([1:nr_exmp_all]+0, f_img(1:dns:end))/256; %-- take only center region of img 
  clas(idxC, i ) = 1; 
end 
  
netA = [ size(dat,2) 50 size(clas,2) ]; %- network architecture: size of [input, hidden layers, output layer] 
  
nr_nr = sum( netA(2:end)); 
nr_inp = nr_nr + netA(1) + 1; %-- add number of input neurons + bias 
   
w = randn( nr_nr, nr_inp )/100; %-- weights  
w_msk = zeros(nr_nr, nr_inp); 
n1=1; 

https://people.uleth.ca/~luczak/PredC/
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for i=2:length( netA )-1 %-- loop for layers without lateral connections 
  n2 = n1 + netA(i)-1; 
  n3 = n1 + netA(i); 
  n4 = n3+netA(i+1)-1; 
  w_msk(n1:n2,n3:n4)=1; %- backward conn from next layer  
  w_msk(n3:n4,n1:n2)=1; %- forward conn to next layer  
  n1 = n1+netA(i); 
end 
if recur == 1; 
  w_msk(1:nr_nr,1:nr_nr) = 1;%- connect all-to-all within layer 
end 
for i = 1:nr_nr; w_msk(i,i) = 0; end %-prevent self connections 
w_msk(1:netA(2),nr_nr+1:nr_nr+netA(1)) = 1; %-- inputs only go to layer 1 
for n1=1:nr_nr;  for n2=n1+1:nr_nr   
  if sym_w == 1; w(n1,n2) = w(n2,n1); end %-- make weights symmetric 
  w_msk(n1,n2) = w_msk(n1,n2); %-- feedback weights multiplied by gamma  
end; end 
w_msk(:,nr_inp) = 1; %-- each neuron get bias 
  
w_All = zeros( itr,nr_nr,nr_inp);  
r = zeros(nr_inp, nr_exmp, t_clmp ); %- array with activity during free phase  
rp = zeros(nr_nr, nr_exmp_cl); 
aa = zeros(nr_exmp_cl,nr_nr,nr_inp); aa1 = zeros(nr_exmp_cl,nr_nr,nr_inp); 
train_acur = zeros(1,itr); supr_jj = zeros(1,itr); 
  
for jj = 1:itr %- loop for epochs   
  w0 = w; 
  if sym_w == 1; for n1=1:nr_nr;  for n2=1:nr_nr   
     w0(n1,n2) = (w(n2,n1) + w(n1,n2))/2; %-- make weights symmetric 
  end; end; end 
  w = w0; 
  w = w .* w_msk;  
   
  idx_rand = ceil( rand(1,nr_exmp)*size( clas,1)); %-- select random samples for training  
  
  r(nr_nr+1:nr_nr+netA(1),:,1:t_clmp) = repmat( dat(idx_rand,:)',1,1, t_clmp); %-- add clamped inputs  
  r(nr_inp, :, 1:end) = 1; %-- bias 
   
  v = zeros(nr_exmp,nr_nr); 
  v1 = zeros(nr_exmp_cl,nr_nr); 
   
  for i = 1:t_clmp-1  %- calculate activity at each time step for free phase 
    v = v*(1-dt) + squeeze(r(:,:,i)'*w')*dt; 
    v( v<0 ) = 0;      %-- ReLu    
    r(1:nr_nr,:,i+1) = v';   
  end  
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  a = r(:, 1:nr_exmp_cl, end ); %-- activity at convergence point for free phase  
   
  if do_pred == 1  %-- if 1 then predict sustained response from onset activity 
   
    ex_tr = nr_exmp_cl+1:nr_exmp; %-- index of train examples for predictive model 
    ex_pr = 1:nr_exmp_cl; %-- index for examples used for weights update 
         
    act_tr = r(1:nr_nr,ex_tr, 2:pr_st );    %--for pred from only 1 neuron <<< start from step 2 <<<<   
    act_pr = r(1:nr_nr,ex_pr, 2:pr_st );        
     
    r_end = r( 1:nr_nr , ex_tr,end ); 
    for n = 1:nr_nr  %-- loop for each neuron to predict its future      
      a0 = [ squeeze( act_tr( n ,:,:))'; ones(size(ex_tr))]' \ r_end( n ,:)'; %-- LS predictions  
      rp(n,ex_pr) = [squeeze( act_pr( n ,:,:))'; ones(size(ex_pr))]' * a0;                
    end 
    rp( rp<0 ) = 0; %--ReLU 
    ap = a; 
    ap(1:nr_nr,:) = rp; %-- predicted activity at convergence point for free phase        
    a = ap; %-- overwrite free phase with predicted     
  end %-- end do_pred 
   
  r1 = r(:,1:nr_exmp_cl,:); %- array with activity during clamped phase 
  r1(nr_nr-netA(end)+1:nr_nr,:, t_dc+1:t_clmp) = repmat(  clas(idx_rand(1:nr_exmp_cl),:)',1,1, t_clmp-
t_dc);  %- teaching signal to outputs     
  
  v1 = squeeze( r(:,1:nr_exmp_cl ,t_dc+1)'*w');    
  for i = t_dc+1:t_clmp-1  %- calculate activity at each time step for clamped phase 
    v1 = v1*(1-dt) + squeeze(r1(:,:,i)'*w')*dt; 
    v1 = v1*(1-adp) + a(1:nr_nr,:)'*adp; %-- adaptation toward final predicted activity 
    v1( v1<0 ) = 0;      %-- ReLu    
    r1(1:nr_nr-netA(end),:,i+1) = v1(:,1:nr_nr-netA(end))';  %             
  end   
   
  a1 = r1(:, :, end); %-- activity at convergence point for clamped phase     
  supr_jj(jj) = mean( mean( abs( a1(1:nr_nr,:) - a(1:nr_nr,:) ))); %-- average surprise 
  
   for i = 1:nr_exmp_cl 
     aa(i,:,:) = a(1:nr_nr,i)*a1(:,i)';%-- predicted activity * presynaptic activity 
     aa1(i,:,:) = a1(1:nr_nr,i)*a1(:,i)';%-- clamped activity * presynaptic activity 
   end 
  
  w_All( jj ,:,:) = w ;    
  dw = squeeze( mean( aa1 - aa, 1)*ler_rt ); %- calculate weights change    
  w = w + dw(1:nr_nr,:); %-- update weights 
   
  act0 = r(nr_nr-netA(end)+1:nr_nr,1:nr_exmp_cl, end ); 
  [v_cls clas_p] = max( act0 ); 
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  [v_cls1 clas1] = max( clas(idx_rand(1:nr_exmp_cl),:)' ); 
  train_acur(jj) = (1 - sum(clas_p ~= clas1)/length(clas1))*100;   %-- accuracy on train set 
   
  if mod(jj,30) == 1 
    disp(['epoch: ' num2str(jj) '; train accuracy: ' num2str(train_acur(jj)) '%']) 
  end  
end %-- jj 
  
figure;plot( 1:itr, supr_jj ,'.');title('surprise') 
figure;plot( 1:itr, train_acur ,'.');title('accuracy') 
  p = polyfit(1:itr, train_acur,7); % polynomial fit 
  acur_fit = polyval(p,1:itr); 
  hold on; plot(  1:itr ,acur_fit,'k'); 
figure;plot( train_acur ,supr_jj,'.');title('accuracy vs surprise') 
  p = polyfit(train_acur,supr_jj,7); % polynomial fit 
  supr_fit = polyval(p,sort(train_acur)); 
  hold on; plot(  sort(train_acur) ,supr_fit,'k'); 
 

 
 
%% -- code to calculate accuracy on examples from test data set (cross-validation) 
return %- comment out this line to run this code  
  
nr_exmp2 = 100; %- number of test examples per class  
dat2 = zeros(nr_exmp2*10,length(f_img(1:dns:end))); 
clas2 = zeros(nr_exmp2*10, 1); 
for i=1:10 
  eval(['load ''digit' num2str(i-1) '.mat'''])   
  idxC = [1:nr_exmp2]+nr_exmp2*(i-1); 
  dat2( idxC,:) = D([1:nr_exmp2]+nr_exmp_all, f_img(1:dns:end))/256; %-- take only center region of img 
  clas2(idxC ) = i; 
end 
  
r0 = zeros(nr_inp, nr_exmp2*10, t_clmp ); %- array with activity during free phase   
test_acur=[]; 
for iw = 1:size( w_All,1) %- loop for epochs 
  w = squeeze(w_All(iw,:,:));   
  w0 = w; 
  if sym_w == 1; for n1=1:nr_nr;  for n2=1:nr_nr   
     w0(n1,n2) = (w(n2,n1) + w(n1,n2))/2; %-- make weights symmetric 
  end; end; end 
  w = w0; 
  w = w .* w_msk;    
  r0(nr_nr+1:nr_nr+netA(1),:,1:t_clmp) = repmat( dat2',1,1, t_clmp); %-- add clamped inputs at the end     
  r0(nr_inp, :, 1:end) = 1; %-- bias 
    
  v2 = zeros( nr_exmp2*10, nr_nr );   
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  for i = 1:t_clmp-1  %- calculate activity at each time step for free phase 
    v2 = v2*(1-dt) + squeeze(r0(:,:,i)'*w')*dt; 
    v2( v2<0 ) = 0;      %-- ReLu    
    r0(1:nr_nr,:,i+1) = v2';   
  end 
   
  act0 = r0(nr_nr-netA(end)+1:nr_nr,:, end ); 
  [v_cls clas_p] = max( act0 );   
  test_acur(iw) = (1 - sum(clas_p' ~= clas2)/length(clas2))*100;%-- accuracy on test set 
end 
figure;plot( test_acur,'.'); grid on; title('test accuracy') 
disp(['maximum test accuracy: ' num2str(max(test_acur))]) 
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