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Appendix

EQUIVALENCE BETWEEN PARALLEL TRANSPORT AND MATRIX WHITENING

In general, matrix whitening and parallel transport usings the reference point are different transforma-

tions. However, we show here that under the condi{ﬁni(k)} = 0, Yk, both frameworks are equivalent.
To this aim, consider the following property regarding threque positive-definite square root of the
product of twon x n SPD matrices:

Property: Let A and B be twon x n SPD matrices that commute, i.e4, B = AB — BA = 0. Then
(AB)? = A3 B3,

Proof: Considering that the unique SPD square root of some SPD matdan be computed as? =
Exp(3Log(X)), and taking into account that, given two SPD matrigeand B such that{4, B] = 0,
Exp(A + B) = Exp(A) Exp(B) andLog(AB) = Log(A) + Log(B):

[

(AB)} = Exp(3Log(AB)) = Exp(5 (Log(4) + Log(B))) =

(S1)

N =
N

= Exp(%Log(A)) EXp(%Log(B)) =A2B2 [J

Now, recall that the overall parallel transport transfotiora (including the last matrix whitening step)
when using as the reference poliy the global mean is (subsection 2.4.2):
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Supposing that: and (E(k)) commute, by virtue of the previously stated property andngaknto

account that given two matricesand B, (AB)" = BT AT:
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where in the second step we have used the facts that for a SBDX mawe takeA!/? to be also SPD

and thus satisfieéA'/2)” = A1/, along with ((4)™)""* = (4)7"/2, with (4)""/2 also SPD, and
T . -1

then, ((4)~"/2)" = (4)~/2. One can conclude that under vanishing commutafag=") |, the

transformation reduces to matrix whitening. Siriceand (i(k)) belong toGL(n), the requirement
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[z, (f(k)) | = 0'is equivalent to[%, f(k)] — 0. Therefore, when site meal&"’ commute with the
global mear, parallel transport and matrix whitening represent edeivieframeworks.

PROPERTIES OF RIGID LOG-EUCLIDEAN TRANSLATION

As mentioned in the description of Rigid Log-Euclidean T¥atien in subsection 2.4.3, the transforma-
tion preserves intra-site geodesic distances under the LE&NWework and displaces the matrices in such

~(k _
a way that their transformed site meﬁ(n) is the global mean, for all sitesk.

By using the definition of LERM geodesic distance (7) for masidelonging to the same skeand
modified according to RLETY) transformation (14) one finds

(S4)

) + Log =™y =

- Log(f(k)) — Log(¥) — Log(Z »

(
J

meaning that intra-site geodesic distances are presesvexpacted.

. . =k) = o — .
It is also straightforward to prove that : = 3, Vk. Considering the definition of site mean (12) for
matrices transformed according to (14):
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= Log(%) — Log(E") + Log(E") = Log(T),

and therefore site means become the global medn the case where the terhog(X) is removed from

. ) . . .
the transformation rule (14), one gdtsg(> ) = 0 = Log([), and site means become the identity
matrix /.




