

Supplementary material

Deploying Machine Learning Models Using Progressive Web Applications:
Implementation Using a Neural Network Prediction Model for Pneumonia Related Child
Mortality in The Gambia.

Nuredin I. Mohammed, Alexander Jarde, Grant Mackenzie, Umberto D’Alessandro, David Jeffries
Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia

Correspondence
Nuredin.Mohammed@lshtm.ac.uk
David.Jeffries @lshtm.ac.uk

All the code and data used to deliver the PWA application from https://stats.mrc.gm/NNmodel are

available on the GitHub site, https://github.com/MRCG-djeffries/NNmodel, to implement on their own

servers.

Appendix 1: Fitting neural network

The data set consisted of 11,012 children aged 1-59 months with clinical pneumonia. We split this

dataset into a training and holdout test set, based on a chronological cut-off with 2/3 of the sample prior

to July 16, 2015 comprising the training set. This resulted in a training set with 7,341 children with 167

deaths and a holdout test set of 3,671 subjects with 55 deaths. As the data are clearly imbalanced, we

used a synthetic minority over sampling technique (SMOTE) to balance the training data.

We used nested cross validation to perform a grid search for tuning the learning rate and the number of

nodes in the single hidden layer. The neural network was optimized using the RMSprop algorithm.

During the neural network fitting three algorithms were used to reduce the chances of overfitting:

1. Hold out 30% of training set for validation during training

2. Node dropout rate of 30%

3. An early stopping patience of 5 epochs

The cross-validation process is shown in Figure 1. An outer loop repeated the procedure 1,000 times to

obtain mean values and confidence intervals for the classification performance metrics.

After fitting 1,000 models we matched a model with an identical confusion matrix (shown below)

based on the holdout test dataset, that resulted from a median performing neural network model in the

original paper.

 Predicted Alive Predicted Dead

Actual Alive 2779 837

Actual Dead 10 45

In the original paper the neural network was fitted using caret in R. For this paper the algorithm was

converted to use the R TensorFlow (TF) and Keras libraries. Although the confusion matrices of the two

selected models were identical, the predicted mortality probabilities were not the same, but agreement was

very high (Lin’s concordance 0.943, with 95% CI of 0.940 to 0.947). The Bland Altman plot for the two

mailto:Nuredin.Mohammed@lshtm.ac.uk
mailto:Nuredin.Mohammed@lshtm.ac.uk
https://stats/mrc.gm/NNmodel
https://github.com/MRCG-djeffries/Nnmodel

sets of mortality probability predictions is shown in Figure 2. The discordance based on the differing

optimum thresholds is shown below.

 TF Alive TF Dead

Caret Alive 2716 72

Caret Dead 73 810

Given the differing algorithms, seeding and over-fitting protections in caret and TensorFlow it is

unsurprising that the prediction probabilities are not in perfect agreement and not relevant to this paper,

where the focus is on implementation. Table 1 shows the key performance metrics.

Figure 1: Nested cross validation algorithm

Figure 2: Agreement of mortality prediction from caret versus TensorFlow

Table 1: Model performance metrics

Metric Mean 2.5% 97.5%

Positive Predictive Value 5.3% 4.5% 6.3%

Negative Predictive Value 99.6% 99.5% 99.8%

Sensitivity 80.9% 70.9% 89.1%

Specificity 77.6% 71.8% 83.4%

Balanced accuracy 79.3% 76.0% 81.6%

Likelihood Ratio+ 3.64 3.08 4.45

Likelihood Ratio- 0.25 0.15 0.35

Appendix 2: Exporting the chosen neural network model

The selected neural network from Appendix I was then saved to HDF5 format (hierarchical data format

files), using the command save_model_hdf5, from the keras R library.

To convert this into a tensor flow JavaScript format (note test.h5 is the file created with the above

command), within a terminal window type:

pip install tensorflowjs[wizard]

tensorflowjs_converter --input_format=keras test.h5 tfjs_model

The folder tfjs_model, now contains a JSON and binary file containing the meta and weight data of the

neural network. This must be exported to the PWA file structure as shown below in Appendix 4.

Appendix 3: Mortality risk categories

The output of the tool is designed to give three risk categories (low, medium and high), which are

easier for clinical staff to interpret than risk probabilities, especially when the threshold probability cut-

off is not at 0.5. We determined these cut-offs, by quantizing the LR+ and LR- values against

probability of death (see figure 3 below). In reality, it’s likely that extensive consultation with clinicians

would be required to extend this to care pathway recommendations.

Figure 3: Positive and negative likelihood ratio and cut-off probabilities for risk categories

LOW MEDIUM HIGH

Appendix 4: Constructing the PWA application

The major components of a PWA application are:

• Web manifest file (JSON file)

• Service worker

• Usual JavaScript, CSS and HTML structure for a website.

The Web manifest contains the application meta data. The service worker manages the offline

functionality and pushes data and libraries to off-line storage. Additionally for this application the

TensorFlow JavaScript libraries should also be downloaded for this application. Also the neural

network meta data (two files) also need to be included in the file structure.

The PWA application is stored in the repository Nnmodel on the GitHub page,

https://github.com/MRCG-djeffries/Nnmodel. The folder contains the following files:

File Description

index.html Web page components

index.js

*.css HTML styling files

manifest.webmanifest PWA components

sw.js

tf.min.js Tensor flow JavaScript library

tf.min.js.map

Folder tfjs_model Contains two files group1-shard1of1.bin and

model.json, which contain the neural network

weights and meta data, created in the previous

section

Folder icon Contain icon files for the app.

https://github.com/MRCG-djeffries/Nnmodel

