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All the code and data used to deliver the PWA application from https://stats.mrc.gm/NNmodel are 

available on the GitHub site, https://github.com/MRCG-djeffries/NNmodel, to implement on their own 

servers. 

  

Appendix 1: Fitting neural network 

 

The data set consisted of 11,012 children aged 1-59 months with clinical pneumonia. We split this 

dataset into a training and holdout test set, based on a chronological cut-off with 2/3 of the sample prior 

to July 16, 2015 comprising the training set. This resulted in a training set with 7,341 children with 167 

deaths and a holdout test set of 3,671 subjects with 55 deaths. As the data are clearly imbalanced, we 

used a synthetic minority over sampling technique (SMOTE) to balance the training data. 

 

We used nested cross validation to perform a grid search for tuning the learning rate and the number of 

nodes in the single hidden layer. The neural network was optimized using the RMSprop algorithm. 

During the neural network fitting three algorithms were used to reduce the chances of overfitting: 

 

1. Hold out 30% of training set for validation during training 

2. Node dropout rate of 30% 

3. An early stopping patience of 5 epochs 

 

The cross-validation process is shown in Figure 1. An outer loop repeated the procedure 1,000 times to 

obtain mean values and confidence intervals for the classification performance metrics. 

 

After fitting 1,000 models we matched a model with an identical confusion matrix (shown below)  

based on the holdout test dataset, that resulted from a median performing neural network model in the 

original paper. 
 

 Predicted Alive Predicted Dead 

Actual Alive 2779 837 

Actual Dead 10 45 

 
In the original paper the neural network was fitted using caret in R. For this paper the algorithm was 

converted to use the R TensorFlow (TF) and Keras libraries. Although the confusion matrices of the two 

selected models were identical, the predicted mortality probabilities were not the same, but agreement was 

very high (Lin’s concordance 0.943, with 95% CI of 0.940 to 0.947). The Bland Altman plot for the two 
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sets of mortality probability predictions is shown in Figure 2. The discordance based on the differing 

optimum thresholds is shown below. 
 

 TF Alive TF Dead 

Caret Alive 2716 72 

Caret Dead 73 810 

 

 
Given the differing algorithms, seeding and over-fitting protections in caret and TensorFlow it is 

unsurprising that the prediction probabilities are not in perfect agreement and not relevant to this paper, 

where the focus is on implementation. Table 1 shows the key performance metrics. 

 

 

 

  



Figure 1: Nested cross validation algorithm 

 



 

Figure 2: Agreement of mortality prediction from caret versus TensorFlow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1: Model performance metrics 

 

Metric Mean 2.5% 97.5% 

Positive Predictive Value 5.3% 4.5% 6.3% 

Negative Predictive Value 99.6% 99.5% 99.8% 

Sensitivity 80.9% 70.9% 89.1% 

Specificity 77.6% 71.8% 83.4% 

Balanced accuracy 79.3% 76.0% 81.6% 

Likelihood Ratio+ 3.64 3.08 4.45 

Likelihood Ratio- 0.25 0.15 0.35 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix 2: Exporting the chosen neural network model 

 

The selected neural network from Appendix I was then saved to HDF5 format (hierarchical data format 

files), using the command save_model_hdf5, from the keras R library. 

 

To convert this into a tensor flow JavaScript format (note test.h5 is the file created with the above 

command), within a terminal window type: 

 

pip install tensorflowjs[wizard] 

tensorflowjs_converter --input_format=keras test.h5 tfjs_model 
 

The folder tfjs_model, now contains a JSON and binary file containing the meta and weight data of the 

neural network. This must be exported to the PWA file structure as shown below in Appendix 4. 

 

 

  



Appendix 3: Mortality risk categories 

 

The output of the tool is designed to give three risk categories (low, medium and high), which are 

easier for clinical staff to interpret than risk probabilities, especially when the threshold probability cut-

off is not at 0.5. We determined these cut-offs, by quantizing the LR+ and LR- values against 

probability of death (see figure 3 below). In reality, it’s likely that extensive consultation with clinicians 

would be required to extend this to care pathway recommendations. 

 
Figure 3: Positive and negative likelihood ratio and cut-off probabilities for risk categories 
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Appendix 4: Constructing the PWA application 

 

The major components of a PWA application are: 

 

• Web manifest file (JSON file) 

• Service worker 

• Usual JavaScript, CSS and HTML structure for a website. 

 

The Web manifest contains the application meta data. The service worker manages the offline 

functionality and pushes data and libraries to off-line storage. Additionally for this application the 

TensorFlow JavaScript libraries should also be downloaded for this application. Also the neural 

network meta data (two files) also need to be included in the file structure.  

 

The PWA application is stored in the repository Nnmodel on the GitHub page, 

https://github.com/MRCG-djeffries/Nnmodel. The folder contains the following files: 

 

File Description 

index.html Web page components 

index.js  

*.css HTML styling files 

manifest.webmanifest PWA components 

sw.js  

tf.min.js Tensor flow JavaScript library 

tf.min.js.map  

Folder tfjs_model Contains two files group1-shard1of1.bin and 

model.json, which contain the neural network 

weights and meta data, created in the previous 

section 

Folder icon Contain icon files for the app. 
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