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1 SUPPLEMENTARY DOCUMENTATION

1.1 Data types and pre-processing

Image data refers to medical images received from hospitals, institutions, or publicly available datasets. When
collected retrospectively, the relevant raw data is not available, and, therefore, the images must remain reconstructed
as-is. Conversely, when gathered prospectively, the raw data are utilized directly for radiomics studies or with
reconstruction parameters appropriate for that research. Indeed, clinical reconstruction settings are properties optimized
for ease of visual observation and are primarily designed for detection tasks and not for more proper characterization.
Non-isotropic images with larger voxel sizes (e.g., ∼4-5 mm) and post-reconstruction by structural smoothing (e.g.,
averaging or Gaussian filtering processing) are commonly adopted. For radiomics, smaller and isotropic voxel sizes
are more suitable because of the convenience of outlining ROI and reducing biased texture calculations. Moreover,
filtering without dropout is not required, and pre-processing pipelines for radiomics (e.g., noise removal, correction of
partial volume effects) could apply to unprocessed data. Currently, most radiomics investigations rely on review data,
and the impact of image capturing parameters and reconstruction algorithms on radiomic analysis demands to be kept
in mind when designing investigative methods.

Non-image data derives from electronic medical records (e.g., age, smoking, clinical staging), test results (e.g.,
pathology and genomic and proteomic tests), and other clinical notes. The information possessed by non-image and
image data is different or complementary. Usually, investigators typically retrieve clinical indicators from a patient’s
medical history and manually enter them into a new dataset to explore clinical factors contributing to improved
predictive outcomes. This manual process is error-prone, and the introduction of such raw errors can be very harmful
and challenging to troubleshoot afterward. Hence, a well-designed data quality checking strategy is necessary (1).

Image pre-processing means homogenizing the ROI and making the extracted characteristics rotationally invariant
to improve their robustness for radiomic analysis (2). Since inter-slice voxel spacing in medical images is often larger
than intra-slice volume spaces, resulting in image data being voxel anisotropic, while rotational invariance of feature
extraction requires data to be voxel isotropic. Therefore, interpolation is required to make the voxels equally spaced in
each direction. Up-sampling or down-sampling is supposed to be the preferred method for interpolation algorithm
selection, and there is no explicit recommendation yet. Furthermore, different modalities of image data may demand
distinct interpolation methods. For example, CT-based datasets are usually isotropic, while the provided MRI data are
generally non-isotropic. The next step is data normalization, which aims to remove pixels in the segmented region that
are not within the specified gray value range. CT and PET data are commonly subjected to region re-segmentation to
exclude possible confounding factors, such as pixels of air or bone within the tumor ROI. For MRI data with multiple
intensity units, filtering by gray level value is impossible, and filters are ordinarily available to eliminate outlier pixel
points. Some examples are the rejection of elements outside the range of grayscale averages +/- three times standard
deviations. Finally, a discretization operation is routinely run to reduce the effect of noise. Ideally, a balance exists
between removing noise and retaining meaningful signatures. Unfortunately, this also indicates that the optimal choice
of the image readout pattern is strongly dependent on the data acquisition parameters (3). The current state of the art is
to select the appropriate discretization partner based on experience.

1.2 Second- and higher-order texture features

Gray-Level Cooccurrence Matrix (GLCM) features describe the intensity relationship between a pair of voxels
(second-order gray-level). The GLCM calculates the strength information of the voxel pair in all directions and
distances (usually one voxel). The specified directions involve two horizontal, two vertical, and four diagonal lines
in 2 dimensions and 13 different directions from 3 dimensions during the computation. Then, a matrix is created in
each direction to count the probability of certain combinations among neighboring voxels. Finally, the measured
rich intensity data are condensed into several different evaluation metrics (4). For example, texture entropy reflects
the inhomogeneity or randomness of the gray-level; contrast describes the gray-level differences across voxel pairs;
correlation shows the degree of linear correlation of the gray-level; contrast moments measure the local strength
changes; maximum probability indicates the most important pair of adjacent voxel values.

Gray-Level Size Zone Matrix (GLSZM) features represent the number of adjacent voxels with the same gray-level
image. In the GLSZM, the elements correspond to the count of grayscale regions with the same gray-level (rows) and
size (columns), which can come from 2D (8 neighboring regions) or 3D (26 adjacent zones). Therefore, the matrices
corresponding to uniform and inhomogeneous ROI are different and behave as wide and flat or narrow matrices. The
attributes computed from the matrix have large/small and high/low regions highlighted (5), indicating the distribution
of major/minor and superior/inferior gray areas, respectively.
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Gray Level Distance Zone Matrix (GLDZM) features combine texture and morphological characteristics. GLDZM
adds the additional requirement to GLSZM that neighboring voxel regions with the same ROI edge distance are
considered variants of GLSZM (6). It also appears in the names of the profiles, e.g., the small distance high grayscale
emphasis signature.

Gray Level Dependence Matrix (GLDM) features are the number of connectives in the image at a predetermined
distance, reflecting the grayscale dependence (7). The elements of the GLDM consist of the grayscale level i and the j
neighboring dependent pixels and the times of their occurrence counted.

Gray-Level Run-length Matrix (GLRLM) Features defined as the duration of continuous voxels with the same gray
value in a particular direction of the image. It provides information about the spatial distribution of one or more
orientations from 2D or 3D (8). Where the element (i, j) of the GLRLM represents the number of j consecutive gray
levels that occur in the given direction i. GLRLM can calculate the percentage of voxels within the ROI, the run
emphasis moment and the non-uniformity, characterizing the granularity, the number of long- and short-run, and the
distribution of gray levels and run lengths, respectively. These characteristics are highly similar to GLSZM, without
valuable complementary information, and their simultaneous application is generally not recommended.

Neighborhood Gray-Tone Difference Matrix (NGTDM) features capture the difference between each and neighboring
voxels at a predetermined distance, i.e., the sum of mean gray level values, similar to human perception of the image
(9). Coarseness emphasizes the spatial rate of gray intensity variation, i.e., the relatively uniform gray level among the
central voxels and adjacent regions with high coarseness values. There is a positive correlation between contrast and
overall dynamic range and spatial rate of change, i.e., a considerable interval of gray value vary in the image; busyness
focuses on the spatial frequency of intensity variations, i.e., an ROI consisting of a large number of neighboring blocks
with different gray values has a high busyness. In addition, texture intensity reflects the strength of voxel value shifts
in the image, the higher the complexity of non-uniform images.

Neighborhood Gray-Level Dependence Matrix (NGLDM) features are similar to NGTDM characteristics (10)
which study the gray level relationship per voxel with neighboring voxels, and the only distinguishing factor is
whether dependencies exist across them. The reliance on NGLDM traits represents apparent and minor, and uniform
dependencies reveal the image heterogeneity, homogeneity, and similarity, respectively.

1.3 Automated segmentation models

Recently, automatic segmentation techniques based on deep learning have gained breakthroughs in medical imaging,
with dramatic advances compared to traditional segmentation algorithms (11, 12). Deep learning algorithms seek
to learn the hierarchical representation of features with the idea of stacking multiple layers, with the output of the
previous one serving as the input to the next and resulting in a stratified expression of the input information. The
architecture is a multilayer network consisting of input, hidden (multiple), and output tiers, where only the nodes of
the adjacent ones are connected, and the nodes of the same and across layers without being linked. Each level can be
similar to a logistic regression model.

Convolutional Neural Networks (CNN) is one of the most widely deployed automatic partitioning frameworks in
the field of natural images and has demonstrated strong potential in ROI splitting (13, 14). The core structure of
convolution and pooling and fully connected layers through which the input image will pass to obtain the desired
output (see Manuscript Figure 2). As can be seen in the figure, after several convolutions and pooling, the original
multi-dimensional data is “flattened“ (i.e., converted to a one-dimensional array) and then attached to the fully
connected layer. The fundamental nature of the CNN is that low-level learning of superficial characteristics (e.g.,
textures and edges) is further employed to study higher-level, more abstract traits. As a result, the network allows
learning both local and global peculiarities, which is more conducive to focus on subtle changes in the data.

Fully convolutional neural networks (FCN) convert the fully connected layers of a CNN into separate convolutional
layers such that all levels are convolved (13). In CNN, the final desired output value is the probability that the input
image belongs to each class, a combination of target detection and semantic segmentation. For FCN, semantic level
partitioning comes about by recovering the feature map of the final convolutional layer to the size of the input image.
Also, FCN addresses the spatial information lost when mapping the characteristic map to a high-dimensional signature
vector in the fully connected level of the CNN. The process could take place in two stages: the encoding procedure is
to learn the both low- and high-level traits of the input data and generate a fixed-length feature vector; the decoding
aims to classify the trait map at the pixel level by upsampling the characteristic map of the final tier and restoring it to
the size of the original image.

Moreover, FCN employs a backpropagation algorithm (15) to train the model in the labeled dataset, a supervised
learning process. The first step of the backpropagation mechanism is to randomly assign all weights in the network
(forward propagation) to predict the input data in the training set. Then, the loss function is used as an error indicator
to compare the predicted values with the known and expected output results and back-propagate all nodes’ mistakes.
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Meanwhile, the process repeated after updating the corresponding node weights based on the error signal until the
model accuracy reaches an acceptable range.

A large proportion of FCN-like algorithms that were applied successfully in the medical image came from well-
established classification networks in computer vision, such as AlexNet(16), VGG (17), GoogleNet (18). Over the
past decade, the improvement of algorithmic computational efficiency and hardware power, especially the widespread
availability of GPU, has accelerated their application in 3D volumetric medical data (e.g., enhanced CT, PET, MRI).
For example, the U-Net (19) architecture, broadly utilized for medical image segmentation, forms a U-shaped structure
with four downsampling and four upsampling times, respectively, utilizing the previously mentioned encoder-decoder
framework. Jin et al. (20) introduced shallower convolutional layer features (higher resolution and shallow layers)
using jump connections, allowing to connect different feature mapsĺevels, thus better preserving spatial domain
information and learning hallmarks at different levels in the input image. Also, U-Net allows faster and more efficient
segmentation in small sample datasets, which is very suitable for the medical image of clinical annotation. Zhao et al.
(21) proposed V-Net based on U-Net, introducing a new objective function (Dice coefficient) to optimize the training,
which can well handle the case of severe imbalance between the number of foregrounds and background voxels. In
addition, DeepMedic is a multiscale two-channel 3D CNN architecture originally intended for lesion segmentation
in brain MRI (22). Looney et al. (23) implemented a placental segmentation of 3D US volumes, suggesting that
DeepMedic is a proper architecture for cross-modality 3D data. Recently, Yang et al. (11) exploited a combination of
3D FCN and RNN to complete the segmentation of multiple targets, including the fetus, gestational sac, and placenta,
in US data. They employed a serialization strategy to resolve blurred boundaries in the images and a hierarchical
depth-supervised mechanism to improve the information flow in the network, thus increasing the performance of the
segmentation. Similarly, Fiorentino et al. (24) presented a cascaded FCN framework to segmentation fetal head and
abdomen in 3D US. Thus, the FCN and CNN frameworks exhibit excellent capabilities in the task of segmenting
various tissues (e.g., thorax, abdomen, pelvis, head and neck, brain) across diverse imaging (e.g., CT, US, FDG-PET,
MRI), which contributes to the automatic localization of ROIs in radiological analysis.

1.4 Deep learning models

1.4.1 Generative models

1.4.1.1 Generative Adversarial Networks (GAN)

GAN is the best promising generative unsupervised architecture in recent years (25). The network exploits mutual
game learning between two independent neural networks, namely the generator and the discriminator, to generate the
desired output. The task of the generator model is to learn the input data and make its synthetic data closer to the actual
data to “fool“ the discriminator. The discriminator model finds the “fake“ data produced by the generator, distinguishes
the differences between them, and discriminates the true from the false. During the training process, an adversarial
relationship exists between the two, with the ultimate goal of maximizing the accuracy of the pseudo-samples created
by the generator.

1.4.1.2 Deep Belief Networks (DBN)

DBN consist of multiple stacks of restricted Boltzmann machines (RBM), allowing the construction of network
architectures of arbitrary depth (26). In the unsupervised learning process, the first layer of RBM to be trained first
with the initial observation data, the abstract representation of the input data obtained after the first layer of training as
input to the second level (new observation data), and forwards until the last tier of RBM, which eventually generates a
joint distribution between observation data and labels. In order to improve the ability of DBN to distinguish other
individual differences, a supervised training process might is available to optimize the parameters. Since medical
images typically lack data with annotations, a combination of supervised and unsupervised methods is typically
considering.

1.4.1.3 Variational Auto-Encoder (VAE)

VAE is a variant of AutoEncoder (25). It differs by adding statistical information that the feature vectors represent
Gaussian distributions so that the input data become encoded as characteristic vectors with spatial continuity. After
sampling from the signature space, the decoder restores the input data to the same size. In short, the modified encoder
generates a large number of latent vectors that follow a unitary Gaussian distribution and then adjusts the loss function
containing the latent vectors, the mean square error between the input and output, and the Kullback-Leibler scatter of
the Gaussian distribution to fit the original data and give a well-structured trait space.

1.4.2 Discriminative models

1.4.2.1 Convolutional Neural Networks (CNN)

The underlying principles of CNN were already present in Section 1.3. Besides applying segmentation tasks,
CNN also perform well in classification problems on multi-modality images (e.g., CT, pathological tissue images,

Frontiers 3



Supplementary Material

US) (27–29). Unlike radiomics with automatic segmentation ROI, which employs learned characteristics directly
for classification without feature filtering and classifier classification. For example, Chaunzwa et al. (30) built a
CNN-based 3D model on CT images of NSCLC patients that significantly differentiated between low- and high-risk
mortality groups. Khosravi et al. (31) employed CNN-based network architecture over histopathology images of lung,
bladder, and breast cancers with 100% and 92% accuracy in classifying cancer types and two subtypes of lung cancer,
respectively. Zhou et al. (32) developed an automatic model for diagnosing benign and malignant thyroid nodules
with CNN, and the screening accuracy of benign and malignant nodules on US images was 96%, outperforming other
deep learning models.

Furthermore, CNN displays strong potential in medical image registration (33) and reconstruction (34) tasks. Gehlot
et al. (35) presented a CNN regression method to solve slow computation and small capture range in 2D/3D image
registration. Compared with the intensity-based method, the proposed approach markedly expands the catch scope
and reduces the memory occupation. Luo et al. (36) addressed the issue of high-quality image reconstruction of severe
artifact data in low-dose X-ray CT utilizing a CNN-based wavelet transform algorithm to suppress specific CT noise
and demonstrated its superiority over existing model-based denoising schemes.

1.4.2.2 AutoEncoder (AE)

VE is an unsupervised network structure made of two modules, encoding, and decoding, which can pattern any
neural network architecture (37). The encoder learns the hidden features of the input data. At the same time, the
decoder utilizes the studied characteristics to reconstruct new ones of the same size as the original data and then trains
the encoding and decoding parameters in the network by minimizing the divergence from the original to generated
data. When training is complete and random to enter, the decoder can generate approximate data similar to PCA but
with better performance. Except for reducing the dimensionality of the input data and acting as a feature extractor for
supervised models, it is precious for lack of labeled or sparse data. There exist applications in representation learning,
classification, and image denoising (30, 37, 38).

1.4.2.3 Multilayer Perceptron (MLP)

MLP is a feedforward neural network containing one or more hidden layers known as a fully connected neural
network (39). It is a forward propagation, where the input data is transferred unidirectionally from the input layer
to the output one and can have plural hidden levels. The more tiers a neural network has, the more capable of
expressing complex patterns and the higher the computational complexity. Moreover, the heterogeneity problem,
which single-layer perceptrons cannot solve, is overcome by a continuous nonlinear function and allows for multiple
classification tasks of medical images. For instance, Ho et al. (40) employed medical images of head and neck cancer
patients to classify benign and malignant lymph nodes and extra-nodal extension (ENE) and revealed that the MLP
neural network predicted malignancy and ENE with 84% and 77% accuracy, respectively.

1.5 Interpretability of depth features

The features learned by deep learning methods are more relevant to the clinical outcomes and data itself than
the manually pre-defined characteristics. As seen in Manuscript Section 2, radiomic traits from selected external
tools or internally developed programs extracted without considering clinical consequences and data attributes in the
algorithm design. As a result, such manually defined hallmarks describe general information about the ROI (e.g.,
shape, the frequency distribution of voxel intensities, and gray levels) and lack specificity about clinical findings, such
as conventional radiomics approaches may be less suitable for depicting intra-tumor heterogeneity. In comparison,
deep learning algorithms automatically learn depth features from a specific dataset, are more targeted to clinical
results and data, and focus more on the variability within the data. In general, the convolutional layer has hundreds
of filters to learn certain specific traits of an image. The shallow filters learn low-level visual signatures, while the
higher-level filters learn high-level abstract peculiarities, resulting in a multi-level organization of information. As
shown in Manuscript Figure 2, the first convolutional level studies the voxel intensity information within the ROI,
similar to a manually defined first-order histogram feature. The second tier identifies tissue edge information, which
corresponds to hand-defined texture properties. The third layers depict more complex morphological information than
feature engineering, containing human-defined shape profiles. As layers progress, the convolutional layers define
more abstract characters that cannot be interpreted visually but tend to identify heterogeneity within the ROI better.
Thus, without the requirement of pre-designed feature formulas, deep learning algorithms extract features containing
artificially designed ones and recognize higher-level more abstract characteristics. However, it is also because of the
abstract nature of depth features that the models are not very interpretable, and only the results are known, but no
reasonable clinical explanation could come out, which is one of the main obstacles to the translation of research results.
In addition, the idea that deep neural networks are susceptible to “fooling,“ as confirmed by many investigations
(41–43), makes the explainability of the results possibly more critical than the performance of the model.

Although impressive results have emerged in deep learning interpretability research, most of them are limited to
specific models that are not readable and understandable for physicians, medical researchers, and patients, restricting
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their applications in medical imaging. Nevertheless, in recent years, deep learning interpretability of medical images
has attracted attention, which we will describe in the below aspects:

1.5.1 Visualize the lesion area

The black-box nature of deep neural networks lies mainly in the lack of knowledge of how the network organizes,
integrates, and interprets image information and the high degree of nonlinearity of the internal hidden layers. The
deconvolution method (44) is a popular interpretable technique that provides a way to visualize the interior of a
convolutional network by visualizing the convolutional filter and the intermediate hidden levels through an inverted
process of inverse pooling-inverse activation-inverse convolution. The lower convolutional tiers focus on tumor edges
and texture characteristics, while the higher ones correspond to tumor shapes (e.g., high response to circular or
curved shapes). Additionally, lesion regions are visualized primarily by heatmaps (45, 46) and attentional mechanisms
(47, 48) to identify suspicious fields and provide a visual basis, such as Khorrami et al. (46) presents the results of
unsupervised clustering with radiomic features using heatmap cluster gram. This approach localizes or quantifies
doubtful areas of disease in medical images, which can enhance the perception of internal representations of deep
learning models and potentially provide a lesion location.

1.5.2 Semanticized results

Concerning the black box problem of deep learning, outcome semanticization simulates a physician’s consultation
process by generating comprehensible determination procedures and outcomes while outputting diagnostic results,
e.g., primary diagnosis reports. That requires the introduction of medical knowledge in the predictive model to explain
the semantic concepts of neurons in the neural network. Pulvermuller et al. (49) describes network profiling methods
that attempt to establish connections between network neurons and visual semantic notions. Currently, few studies
are associated with neurons, mostly combining different types of data such as medical history information and test
records into the medical image handling process, and finally generating the corresponding diagnostic statements with
an understandable basis for judgment. For example, Wang et al. (50) exploited a multi-level attention mechanism to
combine prior clinical knowledge and chest X-rays to annotate the dataset automatically. The results revealed that the
TieNet network produced significant disease classification and initial write-up. In terms of interpreting medical image
information, Shen et al. (51) evaluated the benignity and malignancy of lung nodules on chest CT in an expert manner
by low-level semantic characteristic simulation, demonstrating superior findings over CNN. Thus, the profound fusion
of distinct deep learning models with medical knowledge can explain the diagnostic yield and provide clinicians with
a referenceable basis for decision-making.

1.5.3 Data causal inference

Regarding logical inference, the logical association of medical image interpretability lies in the causal connection of
the data incorporated in the model design phase, but no study has yet indicated which factors are causally bound to
the diagnostic outcome. In a study of diabetic retinopathy, Niu et al. (52) drew on the well-known Koch’s postulates
in epidemiology to link pathological descriptors to lesions and discovered that images synthesized by GAN had
lesion-related symptoms. The construction of medical images and medical diagnosis knowledge graphs is beneficial to
improve the matching ability and logical reasoning of models. Unfortunately, the integration with medical knowledge
is not enough, and only a few related types of research require further exploration.

Despite the promising results of deep learning interpretability research, it is still in the infancy stage and will have a
long way to go in the future.

1.6 Study design compliance

From a legal perspective, the recent discussion of AI liability in the EU General Data Protection Regulation states
that “improving the interpretability of models is an essential aspect,“ has received attention from policymakers
and has shown its importance even more in the context of sensitive applications. Currently, AI-based applications
require interpretation at the legal level and, most likely, will soon require a basis for interpretation. From an ethical
standpoint, the Hippocratic Oath applies AI systems to clinical settings, and enforcing it is an issue that cannot ignore.
Indeed, since the data collection and modeling process itself is biased by considering specific types of patients, it
is necessary to carefully consider the ultimate beneficiaries and stakeholders of AI technologies are? Algorithms
designed and hidden for commercial purposes are unethical (53) and may exacerbate existing tensions between care
and profitability. In addition, a conscious effort to avoid a high reliance on AI and the abandonment of medical
knowledge in the automation process leads to ”learned helplessness.” At the same time, automated diagnostic models
may pose challenges to accountability and confidentiality in the doctor-patient relationship.

In terms of regulation, the US Food and Drug Administration began regulating computer-aided diagnostic systems
decades ago. As new AI algorithms evolve and data are continuously updating, clinical applications seeking regulatory
approval must scrutinize the authenticity of training data, predictive performance, generalizability and robustness, and
the ability to learn from new data. As a result, new AI applications submitted for regulatory approval may need to
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meet rigorous tests, including quality control and risk assessment. The vast amount of healthcare data that has become
part of Big Data provides a fertile environment for developing state-of-the-art AI systems. However, it also poses
considerable challenges for data security and privacy. Federated Learning currently offers a distributed solution (54)
that allows data sharing across countries or centers while preserving data privacy.
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2 SUPPLEMENTARY TABLES

Table S1: Overview of general feature extraction and analysis toolkits

Packages Imaging ROI tools Image pre-processing Radiomic features IBSI

S-IBEX CT, MR, PET Free and Point draw, Nudge Interpolation, Re-segmentation, Discretization;
Image (smoothing, enhancement, deblur), Change
enhancement, Resample

109: Morphology, Intensity-based statistics and
histogram, GLCM, GLRLM, GLSZM, GLDZM,
NGTDM, NGLDM

IBEX:not meet,S-IBEX: meets

PyRadiomics CT, PET, MR, US, etc. None Filters: Wavelet, Laplacian of Gaussian, Several
simple (square, square root, logarithm, exponential)

120:19 First-order statistics, Shape (2D:10+3D:16),
24 GLCM, 16 GLRLM, 16 GLSZM, 14 GLDM, 5
NGTDM

Meets

CGITA Designed for PET, CT,
MR

Region growth,Fuzzy C-means None 72: GLCM, GLSZM, NGLDM, Normalized
cooccurrence and Voxel-alignment matrix, Voxel
statistics, Texture spectrum

None

Mazda Designed for MR Thresholding, Deformable
surface

Resample, Discretization, Normalization 279:Statistical, Model-based (fractal, stochastic),
Image transform (Fourier, Gabor, Wavelet)

Not meet,bad match with IBEX

CERR CT, PET, MR, US Contouring tools, Segment-
labeler

Filters: Wavelet, Sobel, Gabor, Laplacian of Gaussian First-order/histogram statistics, Intensity-volume
histogram, Peak/Valley, Shape, Size, GLCM,
NGTDM, NGLDM, GLRLM, GLSZM

Meet; Match with PyRadiomics

RadiomiX CT, PET, MR None Discretization, Interpolation: Wavelet Laplacian of
Gaussian Resampling

543: Fractal, First order statistics, Shape and size,
GLCM, GLRLM, GLSZM; Wavelet decomposition

Partial meet

TexRAD CT, PET, MR Manually draw, Thresholding Filters: Laplacian of Gaussian(Scale: 0mm, 2mm,
4mm, 6 mm)

230: Histogram and statistical; Mean value, Entropy,
Kurtosis, Skewness, et.

None

QIFE CT, MR, PET, US,
,etc.

None Segmentation deformation, Topology preservation,
Maximum connected volume velection, Hole filling

Size and intensity, Edge sharpness, Local volume
invariant integral, Surface roughness, Sphericity,
GLCM

None

IBSI=Image Biomarker Standardization Initiative.

Table S2: Overview of commonly utilized feature selection methods and classification models

Feature selection methods Acronym Classifiers and Evaluation Acronym
Filtering methods Supervised learning models
Univariate analysis Support vector machine SVM
Relief RELF Logistic regression LR
Wilcoxon rank sum WLCR Multiple logistic regression MLR
Chi-square test CHST Bagging tree BAT
T-test TET Boosting tree BOT
Spearman correlation SPC Gradient boosting tree GBT
Spearman rank correlation SPRC Dual-channel bidirectional long and short-term memory DC-BiLSTM
Mann–Whitney U test MWUT Multivariate Cox proportional hazards regression MCOX-PHR
Pearson linear correlation coefficient PLCC LASSO-logistic regression LASSO-LR
Distance correlation coefficient DCC Decision trees DT
False Discovery Rate correction FDRC Random forest RF
Fisher’s exact test FET Multivariate random forest MRF
McNemar’s test MNT Linear discriminant analysis LDA

Continued on next page
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Table S2 — Continued from previous page
Feature selection methods Acronym Classifiers and Evaluation Acronym
ANOVA -- Recursive feature elimination RFE
Sparse representation coefficient SRC Naı̈ve Bayes NAB
Orthogonal matching pursuit OMP K-nearest neighbor KNN
Kruskal–Wallis H test KWHT Extremely randomized trees ERT
Shapiro-Wilk test SWT Least-squares regression LSR
X2 test XET Quadratic discriminant analysis QDA
Gini index GINI Random survival forest RSF
Information gain IFGN Multiple Random survival forest MRSF
Euclidean distance EUDT Support vector machine with radial basis function kernel SVM-RBF
Joint mutual information JMI Fisher’s linear discriminant FLD
Multivariate Analysis Linear kernel and radial basis function RBF
Minimum redundancy maximum relevance mRMR Artificial neural network ANN
Mutual information MUIF Unsupervised learning models
Mutual information maximization MIM K-Means clustering KMC
Conditional mutual information maximization CMIM Fuzzy clustering FUC
Mutual information feature selection MIFS Fonsensus clustering FOC
Mean of Feature Ratio MFR Semi-supervised learning model
Wrapping methods Based on deep learning --
Recursive feature elimination RFE Other technologies
Las Vegas Wrapper LVW Deep learning DL
Embedding methods Extreme learning machine ELM
Least absolute shrinkage and selection operator LASSO Model Evaluation
ElasticNet ELN Hosmer lemeshow test HLT
XGboost XGBT Harrell’s C-index HCI
Ridge regression RIR Akaike’s information criterion AIC
Decision Trees DT Matthews correlation coefficient MCC
Random Forest RF Log-rank test LRT
Gradient Boosting Tree GBT DeLong test DLT
Random logistic regression RLR Relative standard deviation RSD
support vector machine-based recursive feature elimination SVM-RFE Receiver operating characteristic ROC
Unsupervised methods Area under curve AUC
Principal component analysis PCA Calibration plot CAP
Independent component analysis ICA Kaplan-Meier curves KMC
Isometric mapping ISOMAP Heatmaps --
Cluster analysis CA Nomogram --
Locally linear embedding LLE -- --

Table S3: Application of deep learning with radiomics studies in different modalities

Study;Dataset;
Total:Train+Test

Modality;Patient;
Predictive;Method

Features
(Clinical;Radiomic;Predictive)

Model
(Construct;Statistics)

Predictive performance(%);
Application Type

Conventional radiological images

Li et al. (55); 2 Centers;
1985: *

Mammographic; Breast cancer;
Mammographic density classification;
DL

–; Depth features; high-order, high-abstraction,
and subtle features

ResNet50 with DC (RNDCCA) & 4 Inputs with DC
& CA (4IDCCA) & ResNet50, ResNet34, ResNet101,
Multi-View inputs (2, 2 or 4), DC and CA

RNDCCA (ACC, AUC, F1-score): 88.7,
97.4, 87.1; 4IDCCA: 90.3, 97.0, 89.2;
Diagnosis

Continued on next page
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Table S3 — Continued from previous page

Study;Dataset;
Total:Train+Test

Modality;Patient;
Predictive;Method

Features
(Clinical;Radiomic;Predictive)

Model
(Construct;Statistics)

Predictive performance(%);
Application Type

Kolossvary et al. (56); 1
Hospital; 300: *

CT; Coronary artery disease (CAD);
Development of CAD; Radiomics

Cardiovascular risk factor (11); 1276; 13 separate
significant clusters

Multivariable and cluster analysis, Robustness of
clusters; Similarity matrix and cluster dendrogram,
Bar chart

Conventional risk factors, cocaine use,
and HIV infection are critical factors for
the progression; Diagnosis

Benedetti et al. (57); 1
Hospital; 39: *

ceCT, non-ceCT; Pancreatic
neuroendocrine tumors; Identifying
histopathologic features; Radiomics

grade, microscopic vascular infiltration, .etc (17);
69 (First- second- and higher-order statistics
features); non-ceCT (17), ceCT (18)

Radiomic analysis; Spearman coefficient,
Mann–Whitney test with Bonferroni

Several radiomic features can
discriminate histopathology; Diagnosis

Pang et al. (29); 1 Center;
1447: 1158 + 289

US; Breast masses; Benign vs.
malignant; DL

–; Depth features; * Semi-supervised Inception-V3, TGAN; 5-F CV,
AlexNet, VGG, ResNet

AUC 90.41, SEN 87.94, SPE 85.86;
Diagnosis

Jiang et al. (58); 1 Hospital;
2056: *

MR; Early-stage cervical cancer; Vessel
invasion; DL

–; Depth features; * Attention ensemble learning; VGGNet, Inception-v3,
ResNet-v2, DenseNet121, VGG19-CBAM, VGG19-
SE, 10-F CV, Heatmaps

ACC 81.4, AUC 91.1, SEN 88.1, SPE
75.2; Diagnosis

Meng et al. (45); 4
Hospitals; 539:377+162

CT; Gastric cancer; Lymph node
metastasis (LVM), Lymphovascular
invasion (LVI), T stage; Radiomics

7; 867(First-order, GLCM, GLRLM, GLSZM,
GLDM, NGTDM); LVM: 2D(7) 3D(6), LVI:
2D(3), 3D(2), pT4 or other pT stage: 2D(7) 3D(5)

LRM, SVM; ICC, Select (MWUT, PLCC, mRMR,
LASSO), 5-F CV, Heatmaps

LNM (AUC): 2D(73.1), 3D(72.2), LVI:
2D(69.9), 3D(73.2), pT: 2D(73.1),
3D(72.9); Diagnosis

Xie et al. (59); 1 Hospital;
74: *

CT; Malignant pleural mesothelioma;
BAP1 mutation; Radiomics

morphological (10); 1316 (32 First-order, 74
Texture, 744 Wavelet, 186 LoG); 3D(4), 2D (2)

LR; Univariate and multivariate analysis, SMOTE,
MWUT, WLCR, 1000-times bootstrap

3D-based radiomic features have better
predictive power than 2D; Diagnosis

Du et al. (60); 1 Hospital;
548: 438 + 110

US; Pregnant women; Fetal lung
development; Radiomics

10; 430 (15 Morphological, 73 Texture, 342
Wavelet); 150-300

SVM; Select (SRC, OMP), 5-F CV AUC 95-99, ACC 80.6-86.4, SEN 74.5-
91.3, SPE 75-88; Diagnosis

Ligero et al. (61); 1
Hospital; Cohort 1-3 (115,
67, 63)

CT; Advanced Solid Tumors (breast,
cervix, gastrointestinal); Anti–PD-
1/PD-L1 Response; Radiomics

9 types; First- second- and higher-order statistics
features; 26 (ICC >0.7), 14 (Elastic-net model)

MCOX-PHR; LR, MWUT, AIC, HLT, Kaplan–Meier,
10-F CV

Radiomics (AUC, 95% CI): 70.0, [0.64,
0.77], Radiomics-clinical: 74.0, [0.63,
0.84]; Diagnosis

Rossi et al. (62); 3 Centers;
170

CT; NSCLC; EGFR; Radiomics 2; 104 (First-order, GLCM, GLDM, GLRLM,
GLSZM, NGTDM); 42

SVM; Select (MFR, PCA), Test-Retest, 5-F CV AUC 85, ACC 88.1; TKIs: 17 RFs
associated with T790M; Diagnosis

Agazzi et al. (63); 1
Hospital; 84

CT; NSCLC; EGFR mutation and ALK
rearrangement; Radiomics

Age, Smoking, ALK, and EGFR status; 29 (CT
texture fetures by radiologists experienced); 17

Generalized boosted regression model (GBM);
SMOTE, mRMR, ANOVA, 10-F CV

ACC 81.76, 95 CI [81.45–82.06];
Noninvasive characterization Diagnosis

Choi et al. (64); 3 Centers;
1166: 856 + 310

MR; Gliomas; IDH mutation;
Radiomics + DL

*; 3Dl 6 Loci, 3D 13 shape and depth features;
unclear

Hybrid model (Model 1 & 2); Model 1 (3D U-shaped
CNN), Model 2 (34-layer ResNet), Ablation analysis
(conducted and saliency maps), DC

3 datasets: ACC (93.8, 87.9, 78.8),
AUROC (96, 94, 86), AUPRC (88, 82,
81); Diagnosis

Wu et al. (65); 3 Centers;
297:229+68

CT;Lung adenocarcinoma;Invasive
adenocarcinoma;Radiomics

25; *; SEM(7), GTV region (16) GTV Model; ComBat, Select (WLCR, SPC, Boruta),
DLT, ICC

AUC 98, ACC 93, SEN 98, SPE 78;
Diagnosis

Liu et al. (66); 2 Hospitals;
148:111+37

PET/CT; Lung adenocarcinoma;
EGFR; Radiomics

4; CT (1470), PET (100); CT (8), PET (2) Xgboost; Select (MWUT, MRF, lR) AUC: EGFR-Mutant 87, Exon19 77,
Exon21-L858R 92; Diagnosis

Zhang et al. (67); 1
Hospital; 248:175+73

PET/CT; Lung adenocarcinoma;
EGFR; Radiomics

5; CT (45), PET (47); Maximum, SHAPE,
GLCM, GLRLM, NGLDM, GLZLM

MLR; Select (MWUT, TET, CHST, LASSO), 10-F
CV, HLT

AUC 87, ACC 80.82, SEN 91.67, SPE
70.27; Diagnosis

Mu et al. (68); 4 Hospitals;
EGFR, TKIs, ICI: 1232,
67, 149

PET/CT; NSCLC; EGFR, Treatment
response; DL

7; Depth features; * DL Score (DLS); Select (MNT, WLCR), Model
(MLR), DLT, Heatmaps

EGFR: AUC 79; DLS with PFS:
Strong positive (TKIs) and negative (ICI)
correlations; Diagnosis

Haubold et al. (69); 1
Hospital; 42:*

PET-MRI; Suspected primary brain
tumor; Mutation; Radiomics

*; 19284; 8-64 features Linear SVM, RF; Select (TET, ANOVA, CHST, RLR),
3-F CV

AUC: ATRX 85.1 MGMT 75.7 IDH1
88.7 1p19q 97.8; Diagnosis

Jin et al. (70); 1 Hospital;
172: 100 + 72

US; Cervical cancer; Lymph node
metastasis (LNM); Radiomics

3;152(2 Shapes,7 Size,15 Histogram,128
Texture);3 GLCM, 1 GLRLM, 2 GLZLM

LR; Select (MWUT, FET, CHST, ELN, LASSO, RIR) AUC 77; 6 features significantly
associated with LNM; Diagnosis

Peng et al. (71); 1 Hospital;
805: *

US; Primary liver cancer;
Histopathological Subtypes; Radiomics

16; 5234 (First-order, Shape, Wavelet, Texture);
Hepatocellular carcinoma (HCC): 16, Intrahepatic
cholangiocarcinoma (ICC): 19

LR; ComBat, TET, MWUT, KWHT, SVM-RFE, SPC,
LASSO, RF, LR, MLR, mRMR, DT, NAB, KNN, LR,
SVM, BAT, RF, ERT, ADB, GBT, Z-score

HCC vs non-HCC AUC: Train 85.4, Test
77.5; ICC vs HCC-ICC AUC: Train 92.0,
Test 72.8; Diagnosis

Dohan et al. (72); 9
Centers; 230:120+110

CT; Colon cancer treated with FOLFIRI
and bevacizumab; Treatment response;
Radiomics

10; 114; Univariate analysis (20), Multivariate
analysis (3)

MCOX-PHR; LRT, Kaplan-Meier, SpectraScore 3 OS significant features could identify
patients with good response within 6
months; Response

Chen et al. (73); 3 Centers;
internal (595: 355 + 118),
external (122)

ceCT; Hepatocellular carcinoma;
Response to first transarterial
chemoembolization (TACE); Radiomics

27 items; 3404 (851 x 4ROI); 18 Multivariable LR, MCOX-PHR; LASSO, AIC, 10-
F CV, Nomogram, Calibration curve, Kaplan-Meier,
LRT

Subclassification: AUC 90; Objective
response: hazard ratio:2.43, 95% CI:
1.60–3.69, p >0.001; Response

Continued on next page

Frontiers
9



S
upplem

entary
M

aterial
Table S3 — Continued from previous page

Study;Dataset;
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Predictive;Method

Features
(Clinical;Radiomic;Predictive)

Model
(Construct;Statistics)

Predictive performance(%);
Application Type

Dissaux et al. (74); 4
Centers; 87: 64 + 24

PET/CT; NSCLC with SBRT; Local
recurrence (LC); Radiomics

6; 92; PET (IC2, Strength), CT(IC2, Flatness) MCOX-PHR; ComBat, Select (SPRC), DLT, Youden
index, Kaplan–Meier

SEN 100, SPE 88; 2 PET features related
to LC; Response

Fatima et al. (75); 2
Centers; 214 (Recurrence
17, Non 34): *

US; RT treated head-neck squamous
cell carcinoma; Recurrence; Radiomics

10; 7 quantitative, 24 textures; delta-radiomics
(Week-1 2, Week-4 4)

SVM; Select (CHST, FET, SWT, TET, MWUT,
LASSO), LRT, Kaplan Meier

Week-1: AUC 75, ACC 80 Week-4: AUC
81, ACC 82; Response

Xiong et al. (76); 1
Hospital; 125: 63 + 62

MRI; Breast cancers; NAC
insensitivity; Radiomics

8; *; Kurtosis, NGTDM-busyness, GLCM-IMC2,
NGTDM-busyness

MLR; Select (WLCR, LASSO), 5-F CV, AIC AUC 79.2, ACC 87.1, PPV 33.3, NPV
92.86; Response

DiCenzo et al. (77); 4
Centers; 82: *

US; breast cancer; Treatment response
with NAC; Radiomics

6; 31 (GLCM); KNN (3), SVM-RBF (4), FLD (3) KNN; Select (SWT, TET, MWUT), Model (SVM-
RBF, FLD), CV

AUC 72.6, ACC 86.6, SEN 83.3, SPE
72.6, F1-score 87.1; Response

Jiang et al. (78); 2
Hospitals; 592: *

US; breast cancer; Pathological
complete response (pCR) with NAC;
Radiomics + DL

13; Radiomic (Histogram, Morphology, Intensity,
Laws, Wavelet, Texture), Depth features; ROI-1
(5), ROI-2 (7)

DL radiomic nomogram; Select (FET, CHST, TET,
MWUT, LASSO), DLT, HLT, ICC, Calibration curve

AUC 94; Able to predict pCR better;
Response

Quiaoit et al. (79); 3
Centers; 59: *

US; breast cancer; Treatment response
with NAC; Radiomics

7; Texture (GLCM); Week-1 3, Week-4 4 SVM-RBF (Week 1, Week 4); Select (SWT, ANOVA,
MWUT), Model (KNN, FLD)

AUC, ACC, SPE, SEN, F1-Score: Week-
1 87, 81, 79, 83, 81; Week-4 87, 81, 82,
80, 81; Response

Hu et al. (80); 2 Centers;
231: 161+70

CT; Esophageal squamous cell
carcinoma; Treatment response to
neoadjuvant chemoradiotherapy;
Radiomics, DL

11; 851 (first-order, shape, and second-order
features included GLCM, GLRLM, GLSZM,
GLDM, and NGTDM): 107 (original) and 744
(wavelet); depth features

ResNet50; Xception, VGG16, VGG19, InceptionV3
or InceptionResNetV2, SVM, ComBat harmonization,
FET, KWHT, HLT;

ResNet50 (best): ACC 77.1, AUC 80.5,
95% CI [0.696–77.9], radiomics: ACC
67.1 ,AUC 72.5, 95% CI [0.549–0.913];
Response

Haider et al. (81); 1 Center;
190: *

PET/CT; Oropharyngeal squamous
cell carcinoma; Post-radiotherapy
locoregional progression; Radiomics

12; 1037 (PET), 1037 (CT): n=11 (14 shape, 18
first-order, 75 texture-matrix);*

RF + clinical model; Random survival forest, RF
model, clinical model, 5-F CV, HCI, LRT, Risk
stratification and Kaplan-Meier;

C-index: 76, log-rank p-values of 0.003,
0.001, 0.02, 0.006 in Kaplan-Meier
analysis; Prognosis

Zhao et al. (82); 27
Centers; 87: 61 + 26

MRI; Brain metastases of ALK-positive
NSCLC; PFS, High and low risk
stratification; Radiomics

5; 396 (Histogram 42, GLCM 144, GLRLM 180,
Haralick 10, Morphological 9, GLZSM 11); 9

LASSO-LR, R-cores; Select (mRMR, CHST, FET,
MWUT, LASSO), 10-F CV, Kaplan-Meier

Intracranial progression within 51 weeks:
AUC 85; PFS (R-scores): high- vs. low-
risk (P=0.017); Prognosis

Ferreira et al. (83); 3
Hospitals; 158: 80% + 20%

PET/CT ; Cervical cancer; Disease-free
survival Radiomics

4; 215 (first-order, geometry, fractals, texture
matrix and others); 3 (clinical), 6 (radiomic)

MCOX-PHR; RF, mRMR, MIFS, GINI, ANOVA,
PLCC, Kaplan-Meier curves, LRT, bootstrapped,

AUC 78, F1-score 49, precision 42,
recall 63; Prognosis

Khorrami et al. (46); 2
Hospitals; 139:50+89

CT; NSCLC PD-1/PDL-1; Treatment
response, OS; Radiomics

7; 57(Textures, Statistics, Shapes); delta-radiomic
features

LDA, MCOX-PHR; Select (WLCR), ICC, Heatmap
cluster gram, LRT, Kaplan-Meier

response: AUC 88±8, OS: P(0.0011) C-
index(0.72); Prognosis

Krarup et al. (84); 2
Hospitals; 233:*

PET/CT; NSCLC; Tumor heterogeneity;
Radiomics

*; *; GLCM (3), GLRLM(1), GLZLM(1),
Shape(1)

MCOX-PHR; Select (SPRC), Uni- and multivariate
Cox regression analysis

Selected RFs correlate with PFS and
carry prognostic value; Prognosis

Liu et al. (85); 1 Hospital;
RFA 214: 149+65, SR 205:
144+61

Contrast-enhanced US; Hepatocellular
Carcinoma; Progression free survival
(PFS) for RFA and SR; Radiomics+DL

17; Thousands of features; p ¡ 0.0001 (*) DL-Based Radiomics Model (Cox-CNN); Select (HLT,
MWUT, TET, XET), AIC, Harrell’s C-index, Kaplan-
Meier survival curves, Nomograms, Visualization

Preoperative 2-year PFS (increase ACC):
Radiofrequency ablation (RFA) 12,
Surgical resection (SR) 15; Prognosis

Histopathological images

Sharma and Mehra (86);
BreakHis; 7909: 7118+791

WSI; Breast cancer; Benign vs.
malignant, Sub-categories 8: benign (4),
malignant (4); Pathomics + DL

–; Handcrafted features (HF): color, shape, texture
Depth features; Handcrafted (6), Deepth (*)

Linear SVM + VGG16; Pathomic Model (HF + RF,
HF + SVM) DL (VGG16, VGG19, ResNet50) + (RF,
SVM, LR, KNN, LDA)

Magnification (40,100,200, 400):ACC
93.97 92.92 91.23 91.79; Diagnosis

Trivizakis et al. (87); 1
Center; 5000: 4050+50,
validation (500)

Histopathological images; Colorectal
cancer; classify tissue pathology;
Pathomics

–; 532: Texture (WPT-LBP, WPT-Gabor filters,
WPT-GLCM, WPT-LBP-GLCM, WPT-Gabor-
GLCM, and other), first- and higher-order
statistics; 6 discrete wavelet texture features

2 SVM and ANN models; 10-F CV, Wavelet packet
transform (WPT), Gabor filters, Local binary patterns
(LBP), ANOVA

proposed model: ACC: 95.32, recent
studies: ACC 87.4; Diagnosis

Kim et al. (88); 1 Hospital,
1 public; Hospital 500:
400+100, Center 160 Test

WSI; Prostate cancer; Benign vs.
malignant, Low-grade vs. high-grade;
Pathomics

–;Texture: Energy, Entropy, Skewness, Variance,
Kutosis, Uniformity; Energy, Entropy, Skewness,
Variance, Kutosis

DC-BiLSTM; Gamma correction, Select (RFE,
ANOVA), Model (SVM, LR, BAT, BOT)

ACC, PRE, Recall, F1-score: benign vs.
malignant (89.2, 88.7, 90.0, 89.2), low
vs. high grade (93.6, 96.3, 91.2, 93.7);
Diagnosis

Pei et al. (89); 1 Center;
549 (LGG: 201 II + 229,
HGG: 119): 80%+20%

WSI; Glioma; Classification and
grading; DL Pathomics

Diagnoses and molecular information; Depth
features; Molecular features, Depth features

DNN and ResNet Models; 5-F CV, Color
Normalization of WSI

LGG vs. HGG: ACC 93.81, competitive
performance; LGG II vs. III: ACC 73.95,
outperform state-of-the-art; Diagnosis

Continued on next page
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(Clinical;Radiomic;Predictive)
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Predictive performance(%);
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Li et al. (90); 1 Hospital;
200: 150+50

WSI; Lung cancer; Classification and
grading; DL Pathomics

–; Depth features; * DenseNets; Top 10 teams in multi-model and single
model methods

Best model: DC 83.98 ± 89.0; Mean
DC: 79.66 (Multi-model methods), 75.44
(single model methods); Diagnosis

Chen et al. (91); 1 Hospital,
GDC-porta; public 377:
284+94, Hos 101

WSI; Liver cancer; Hepatocellular
carcinoma (HCC), Mutation; DL
Pathomics

6; Depth features; * Inception V3; 3 pathologists, Precision-recall curves,
MCC

HCC: ACC 96, F1-score 97.1 (CTNNB1,
FMN2, TP53, ZFX4): AUC 71-89;
Diagnosis

Sun et al. (92); The Cancer
Genome Atlas (TCGA);
462: 393+69

WSI; Liver cancer; Abnormal vs.
normal ; DL Pathomics

–; ResNet-50: Depth features; Patch features
aggregated into global labels

Multilayer perceptron (ReLU); Aggregate features:
max and mean and 3-norm poolings, MIL technique

ACC 98, F1-score 99, Recall 1;
Diagnosis

Karimi et al. (93); 1
Hospital; 333: 247+86

WSI; Prostate cancer; Benign vs.
malignant, Gleason grade; DL Pathomics

–; Depth features; * LR; 6 pathologists, CNNLarge, CNNMedium,
CNNSmall(patch)

Category: ACC 92, Grade 3 vs. Grade
4+5: ACC 86; Diagnosis

Woerl et al. (94); 1 Center,
TCGA; Center 16, TCGA
363: 327+36

WSI; Bladder cancer; Molecular
Subtype; DL DL Pathomics

–; Depth features; * ResNet-based; 4 pathologists, 6-F CV, LRT, Kaplan-
Meier, Nanostring analysis, Class activation maps

Center: Mean AUC 89±3 ACC 69.91,
TCGA: Mean AUC 85, ACC 75;
Diagnosis

Wang et al. (95); 1
Center, TCGA; Center
939:585+354, TCGA
500:400+100

WSI; Lung cancer; Carcinoma, ADC,
SC, SCLC; DL Pathomics

–; ScanNet: Depth features; Patch: AvgFeat,
WeightedFeat, MaxFeat Global: MeanPool,
Norm3

CNN-WeightedFeat-Norm3-Based-RF, CNN-
MaxFeat-MeanPool-Based-RF; Feature visualization:
neighborhood embedding (t-SNE)

Center: ACC 97.3 ACC 95.3 TCGA:
ACC 82.0 ACC 85.6; Greatly exceeds
state-of-the-art methods; Diagnosis

McGarry et al. (96); 1
Hospital; Annotation
(Single 123, Multi 33)

WSI; Prostate cancer; Inter-observer
differences; Pathomics

–; *; * LSR; ANOVA, Krippendorff’s alpha, Apparent
diffusion coefficient, Radiopathomic mapping

Sensitive to labels annotated by
pathologists; Promotes consensus
training; Diagnosis

Hu et al. (97); 3 Centers;
Train:476, validation: 54,
55

WSI; Melanoma and lung cancer;
Anti-PD-1 response; DL Pathomics

–; 2048; TILs, depth features VGG-16 + SVM; 10-F CV, 6 DL models (Resnet-
50, Inception-V3, VGG-19, Nasnet, Desnet and
Mobilenet)

The AUC ranging from 0.55 to 0.71;
The best proposed model: 77.8 95% CI
[0.638-.0905] (melanoma), 64.5 95% CI
[0.494- 0.784] (lung cancer); Response

Qu et al. (98); 1 Center;
659 (train, test, validation):
75%, 15%, 15%

WSI; Breast Cancer; genetic mutations
and biological pathway activities; DL
Pathomics

–; Depth features (ResNet-101); * Multi-layer perceptron (MLP) predictor with self-
attention; 1000-times bootstrapping, AUC, ROC, 95%
CI, DC

AUC ranges:[68–85] (6 mutations),
[69–79] (copy number alteration):
[65–79] (pathway activities); Response

Wang et al. (99); 2
Hospitals; 222: 110+112

WSI; Breast Cancer; gBRCA mutation;
DL Pathomics

–; Depth features; * ResNet; Confusion matrix, DLT, Box plot, bar plot,
Bland–Altman plot

AUC, 95% CI(40, 20, 10, and 5
magnification tiles): 76.6, [76.3–76.9],
76.3, [75.8–76.9], 75.0, [73.8–76.1],
55.1 [52.6–57.5]; Response

Farahmand et al. (28); 3
Centers; 1241 (188 + 668 +
385): 70%+30%

WSI; Breast Cancer; HER2 status and
trastuzumab treatment response; DL
Pathomics

–; Depth features; * Inception v3 architecture; 1000-times bootstrap, 5-F
CV, heatmap

HER2 status: AUC 81; classifier pre-
treatment samples received trastuzumab
therapy; Prognosis

Arya and Saha (100); 1
Center; 1980

3 modalities; Breast Cancer; survival
prediction; DL Pathomics

25 clinical features; 3 modeatiles (clinical profile,
CNA profile, and gene expression profile);
SiGaAtCNN features; STACKED features

Sigmoid gated attention convolutional neural network
(SiGaAtCNN) Stacked radiomic features; 10-F CV,
LR, SVM, MDNNMD

significant enhancements 5.1 in
sensitivity values; AUC 95.0, ACC 91.2,
,PRE 84.1, SEN 79.8; Prognosis

Yamashita et al. (101); 2
Centers; 190

3 modalities; Breast Cancer;
Microsatellite instability prediction; DL
Pathomics, pathologists

–; Depth features; unclear ResNet18 Model; 4-F CV, Confusion matrix AUC 77.9, 95% CI [0.779-0.838];
sensitivity-weighted operating: AUC
93.7, 95% CI: [0.93-0.962]; Prognosis

Klein et al. (102); 2
Centers; 594

WSI; Oropharyngeal squamous cell
carcinomas (OPSCC); identifies
patients with a favorable prognosis; DL
Pathomics

–; Depth features; unclear MCOX-PHR; DenseNet architecture classified, CHST,
MWUT, Kaplan Meier survival curve

The Human papillomavirus association
could serve as a single biomarker and
potentially identify OPSCC patients with
a favorable prognosis; Prognosis

Wang et al. (103);
2 Hospital; 29701:
20336+9365

WSI; Gastric cancer; Survival
outcomes, Lymph nodes with metastases
(MLN); DL

Stage, Grade, Age, Size, Type, Blood, Location,
Sex; Depth features; Tumor-area-to-MLN-area
ratio (T/MLN)

U-Net, ResNet-5, T/MLN; MCOX-PHR, Inception
V4, ResNet-101, Kaplan–Meier analysis

The calculated T/MLN as a prognostic
marker for interpretable; Prognosis

Continued on next page
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Shi et al. (104); 1 Hospital,
TCGA; 2771: *

WSI; Hepatocellular carcinoma;
Survival outcomes, Risk stratification
(5), Tissue regional; Pathomics + DL

14; Depth features; Sinusoidal capillarisation,
Prominent nucleoli and karyotheca,
nucleus/cytoplasm ratio, infiltrating inflammatory
cells

ResNet-18 + CRF, ResNet-50 + MCOX-PHR; Select
(SPC, DCC), Heatmaps (t-SNE and K-means), LRT

Tumour risk score (TRS): 5 risk
groups, associated with tumor immune
infiltration and gene mutations;
Prognosis

Wulczyn et al. (105);
TCGA; 15104:
12095+3009

WSI; 10 Cancer; Survival outcomes;
Pathomics + DL

Stage, Age, Sex; Depth features; * Deep learning system (DLS), Baseline; Kaplan-Meier,
Cox PHM, Heatmaps, C-index, Delta

DLS and survival: Significant
correlation; 5-years (DLS): increase d
6.4% AUC; Prognosis

Chen et al. (106); TCGA;
2756 (images), 677
(Genomic): *

WSI; Glioma, clear cell renal cell
carcinoma (CRCC); Survival outcomes;
Pathomics + Genomics

677 genomic features; GCN: 8 contour, 4 texture,
CNN: *, SNN: *; 15

CNN, Graph Convolutional (GNN) and Self-
Normalizing (SNN) Networks; 15-F CV, Cox loss,
Cross entropy

CNN + GCN + SNN: C-Index Glioma
82.6, CCRCC 72.0; Prognosis

Multi-modality images

Guo et al. (107); 1 Center;
97: 70%+30%

MRI(T2-weighted images (T2WI),
Diffusion-weighted images (DWI)),
ceCT; Rectal cancer; Perineural
invasion; Radiomics

10 (CA19-9, T and N staging, etc.); 396 (42 first-
order, 345 high order, 9 Morphological); 5 T2WI,
1 DWI, 12 ceCT

Univariable and multivariable LR analysis; mRMR,
LASSO, MWUT, DLT, Radiomics scores, Decision
curve analysis, Nomogram

CT and T2WI scores: AUC 90.6 95%
CI [0.761-1.000]; The multi-modality
radiomics nomogram had a higher
clinical net benefit. Diagnosis

Khan et al. (108); 1 Center;
T1, T1CE, T2, Flair: *

MRI; Brain Tumor; Benign or
malignant; DL Radiomics

–; Depth: VGG16, VGG19; Fusion: partial least
square

VGG16/VGG19 + ELM; Model (SVM, NAB,
Softmax, Ensemble tree), 10-F CV, K-Means
clustering, Texture histogram equalization

ACC: BraTs2015 98.16, BraTs2017
97.26, BraTs2018 93.40; Diagnosis

Wu et al. (109); 1 Center;
1682: *

MRI, CT; Lung, breast and brain
malignancies; tumor classification; DL
Radiomics

stage, tumor volume, etc; 313 (tumor morphology
and spatial heterogeneity); 10 (313 to 10)

MCOX-PHR; U-Net45, Consensus clustering, 10,000-
times bootstraps, Kaplan Meier survival curve,
Benjamini–Hochberg method

Automatic tumor segmentation and
reproducible subtype identification;
Diagnosis

Zhao et al. (110); 1 Center;
256: *

Non-contrast magnetic resonance; Liver
tumor (hemangioma and hepatocellular
carcinoma; Segmentation and detection;
DL Radiomics

–; the multi-size edge dissimilarity maps by edge
dissimilarity feature pyramid module; *

United adversarial learning framework; 5-F CV,
compared: (U-net, Rg-GAN) and (Faster R-CNN and
Tripartite-GAN)

segmentation: DC 83.63, ACC
97.75, Intersection-over-union 81.30;
classification: TPR: 92.13, TNR: 93.75,
ACC 92.4; Diagnosis

Alvarez-Jimenez et al.
(111); CPTAC, TCGA;
171: 117+59, 146: CV

WSI, CT; NSCLC; Subtypes: ADC,
SCC; Radiomics + Pathomics

7+9; Haralick texture features + statistics: WSI
360, CT 120; Cross-scale: Cell density, CT
intensity

Linear SVM; Select (SPRC, FDRC, WLCR), Heatmap,
10-F CV

AUC: Pathomic (CPTAC 72, TCGA
77), Radiomic 72 (TCGA), Fusion: 78
(TCGA); Diagnosis

Giardina et al. (112); 1
Center; 30: *

; OCT, MPM and LSRM; Pituitary
adenomas; Discrimination of pituitary
gland and adenomas; Radiomics

–; 98 (healthy gland tissue and adenoma);
6 (OCT GLCM, TPEF GLCM, OCT GLSZM,
TPET GLSZM, TPEF GLSZM, MPM GLSZM)

Radiomic analysis (OCT, MPM, and LSRM); P-values
<0.05

First-level binary classification: ACC 88,
Second-level multi-class classification:
ACC 99; Diagnosis

Shiri et al. (7); TCGA; 150:
82+68

CT, Contrast-enhanced CT, PET;
NSCLC; EGFR, KRAS mutations;
Radiomics + Metabolomics

*; 109: First-order, Shape, GLCM, GLRLM,
GLSZM, NGTDM, GLDM; 90 EGFR, 14 KRAS

SVM, KNN, DT, QDA, NAB, EML; Select (TET,
SPC), 10-F CV, Z-scores, Heatmaps

AUC multivariate: EGFR 82, KRAS 83;
Diagnosis

Zhou et al. (113); 1 Center;
116: *

Structural MRI (sMRI), Diffusion Tensor
Images (DTI) , resting-state fMRI
(rsfMRI); Adolescent; Diagnosis of
early ADHD; Radiomics

–; Boruta based features; 4 T1/2WI, 6 DTI, 10
rsfMRI

Multimodal machine learning framework; SVM, 10-F
CV, Heatmaps

AUC 69.8, ACC 64.3, SEN 60.9,
SPE 67.6, F1-score 62.6; Significant
improvement over the early feature
fusion and unimodal features; Diagnosis

Calisto et al. (114); 1
Hospital; 289: *

MammoGraphy, US, MRI, text, and
annotations; Breast cancer; Breast
image classification; Radiomics

*; Radiomic features; * BreastScreening; Heatmaps, BI-RADS score (by the
DenseNet), ANOVA factorial analysis

A significant reduction of cognitive
workload and improvement in diagnosis
execution; Diagnosis

Joo et al. (115); 1 Center;
536: 80%+20%

MRI, 3D dynamic contrast-enhanced
sequence; Breast cancer; pathologic
complete response (pCR) to neoadjuvant
chemotherapy (NAC); DL Radiomics

Clinicopathologic characteristics; Depth features
(by the 3D-ResNet); 6 dimensions

7 DL models; Nearest neighbor interpolation,
Histogram-matching algorithm, CHST, FET

Clinical model: ACC 82.7, P <0.05;
Multimodal fusion model: AUC 88.8,
ACC 85.0, SEN 66.7, SPE 93.2, PPV
81.4, NPV 86.3 ; Prognosis

Yang et al. (116); 3
Centers; 1633 CT, 3414
blood samples: *

CT, laboratory, and baseline clinical
datas; Advanced NSCLC; Clinical
outcomes; DL Radiomics

Medical history; Depth features; * Simple Temporal Attention (SimTA) model; Multiple
layer perceptron (MLP), MCOX-PHR, 5-F CV,
Kaplan-Meier method, LRT

AUC 80, 95% CI [74-86]; Provides a
promising methodology for predicting
response; Prognosis

Continued on next page12
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Study;Dataset;
Total:Train+Test

Modality;Patient;
Predictive;Method

Features
(Clinical;Radiomic;Predictive)

Model
(Construct;Statistics)

Predictive performance(%);
Application Type

Lv et al. (10); TCGA; 296:
*

PET, CT; Head and neck cancer;
Survival outcomes; Radiomics +
Metabolomics

8; 127: Shape, intensity, Histogram, GLCM,
GLRLM, GLSZM, NGTDM, GLGLM, NGLDM,
GLDZM; Top 10

MCOX-PHR; Select (SPC), 3-F CV, C-index, AIC,
Kaplan-Meier curves

fusion strategy captures more useful
features; Prognosis

Amini et al. (6); TCIA;
182: *

PET, CT; NSCLC; Improved prognosis;
Radiomics

11; 225 (first-order features, 136 textural features:
GLCM, GLRLM, GLSZM, GLDZM, NGTDM,
NGLDM), 10 moment invariant features; Top 10

Multi-level multi-modality radiomics framework;
MCOX-PHR, SPRC, HCI, Kaplan–Meier curves, LRT,
Feature-maps

The clinical model outperformed the
single-modality but was beaten by the
image-level fusion strategy; Prognosis

Yan et al. (117); 1 Center;
2313: 80%+20%

MRI; Glioblastoma; Glioblastoma
progression phenotypes preoperatively;
Radiomics, DL Radiomics

10; 841 (92 features: first-order, second-order, and
filtered wavelet), 9 MR sequences); 153

Machine learning model, DL model; ML (SVM, KNN,
DT), DL (VGG16, ResNet50), TET

ML model: overall AUC 81 (77.5-82.5),
AUC 83-89; ResNet50: overall AUC;
VGG16: overall AUC 96.1; Prognosis

Mariscotti et al. (118); 1
Center; 1574: *

2D mammography, DBT, MRI, US;
Breast cancer; Surgical outcomes;
Radiomics + Ultrasomics

Age, Dimension, Density, Multifocality, Size,
Histology; –; Tumor size, Multifocality, Histology

LR; Select (SWT, MWUT, XET, FET), Uni- and
multivariate analysis

Larger and multiple lesions significantly
associated with mastectomy; Prognosis

3D radiotherapy dose distribution (“images“)

Rossi et al. (119); Mutiple
centers; 351:*

Radiotherapy; Prostate cancer;
Gastrointestinal (GI) and genitourinary
(GU) toxicity; Dosiomics

DVH and non-treatment related (NTR)
parameters; 42 texture analysis (TA) featrues; *

Normal Tissue Complication Probability (NTCP)
models; NTCP: NTR, NTR + DVH, NTR + TA, NTR
+ DVH + TA

GI (AUC): NTR (58), NTR + DVH (68)
or NTR + TA (73); GU (AUC): NTR
(64), NTR + TA (66), NTR + DVH (no
improvement); Toxicity

Gabrys et al. (120); 1
hospital; 153:*

Intensity modulated radiotherapy,
Tomotherapy; Head and neck cancer;
Xerostomia; Dosiomics

6; Shape, Dose shape, Demographic; Dosiomic,
radiomic, and demographic features

Logit and probit NTCP models; Univariate (Z-
score, MWUT, LR model), Multivariate (6 feature
selection algorithms, 7 classification algorithms); 10
cleaning/class balancing algorithms

Xerostomia (AUC); Late:
anterior–posterior (AP): 72, right–left
(RL): 68, Long-term: AP: >72, RF:
>78, Parotid volumes: >85; Toxicity

Liang et al. (121); 1
hospital; 70:*

Volumetric modulated arc therapy;
NSCLC; Radiation pneumonitis (RP);
dosiomics

NTCP factors; 129: GLCM, GLRLM; NTCP,
dosiomics, and dosimetric featrures

Univariate and multivariate LR; Dosimetric model
(DCM), NTCP model (NTCPM), Dosiomics model
(DSM)

Univariate LR (AUC: DCM, NTCPM,
DSM): 66.5, 71.0, 70.9; Multivariate LR:
67.6, 74.4, 78.2; Toxicity

Adachi et al. (122);
Mutiple centers; 247: 70%
+ 30%

Stereotactic body radiation therapy;
Early-stage NSCLC; Radiation
pneumonitis (RP); dosiomics

10 dose–volume indices (DVIs); 6808: shape,
first order, texture features; 10 DVIs, selected
dosiomic features, hybrid features

LightGBM; DVI, dosiomics, and hybrid (DVIs +
dosiomics) models, z-scores, 5-F CV

(ROC–AUC, PR–AUC): DVI (66.0 ±
5.4, 27.2 ± 5.2), dosiomics (83.7 ± 5.4,
51.0 ± 11.5), hybrid (84.6 ± 4.9, 53.1
± 11.6); Toxicity

Lee et al. (123); 1 hospital;
388:*

Intensity modulated radiotherapy; Lung
cancer; Weight loss (WL); dosiomics

Clinical parameter (CP): 10, DVH: 74; 355:
CPs, DVHs, radiomics, and dosiomics featrues;
Radiomics and dosiomics (R&D) featrues

Ensemble; 7 Inputs: CP, DVH, R&D, DVH + CP, R&D
+ CP, R&D + DVH, R&D + DVH + CP; Univariate
LR, Multivariate analysis (SVM, DNN, Ensemble)

Ensemble classifier: AUC (95% CI) 71.0
(63.7, 78.2); Toxicity

Liang et al. (124); 2
hospitals; 70:*

Volumetric modulated arc therapy;
NSCLC; Radiation pneumonitis (RP);
DL dosiomics

Dosimetric and NTCP featrues; *; Dosimetric,
NTCP, and dosiomics factors

Multivariate LR; Convolution 3D (C3D) neural
network)

C3D model (AUC): 84.2; 3 LR models
(AUC): 67.6, 74.4, and 78.2; Toxicity

Wu et al. (125); 4
institutions; 237:*

Intensity modulated radiotherapy;
Head and neck cancer; Locoregional
recurrence; Dosiomics

Age, Sex,T-stage, N-stage, TNM-stage, Tumor
site, Treatment; Radiomic and dosiomic features;
*

MCOX-PHR (RadModel, RadDosModel); CI,
Kaplan–Meier curves, CPD model (dose signatures),
CLD model (clinical parameters), CPD + CLD model,
Dosiomics, LASSO

Dosiomics: CI 66, radiomics: CI 59;
Dosiomics: successfully classified the
patients into high- and low-risk groups;
Prognosis

Murakami et al. (126); 1
hospital; 489: 342 + 147

Intensity modulated radiotherapy;
Prostate cancer; Biochemical failure;
Dosiomics

8 clinical variables, 35 dosimetric parameters
(DVHs); 2475 dosiomic featrues, 1038 radiomic
featrues; 3 clinical variables, 2 dosiomic features

Dosiomics model (multivariate LR); Dosiomics and
radiomics models; Kaplan-Meier curves; 5-F CV;
MWUT; AIC; SPC

CI: dosiomics 66, radiomics 59;
Classified the patients into high- and
low-risk groups; Prognosis

Buizza et al. (127); 1
center; 57: 80% + 20%

Carbon-ion radiotherapy; Skull-base
chordomas (SBC); Local control;
Dosiomics

7 clinical variables, 14 shape, 18 first-order, and
75 textural features; MRI and CT-based radiomic,
and dosiomic features;

Dosiomics models (SVM, MCOX-PHR); 2 survival
models, 5-F CV; Single modality; Combined
Modalities (imaging, dose and clinical information);
PCA; Kaplan-Meier survival curves

Dosiomic and combined models could
consistently stratify patients in high- and
low-risk groups, C-index: 80/24, 79/26;
Prognosis

Hirashima et al. (128); 1
hospital; 888:*

Volumetric modulated arc therapy;
Brain tumor; Gamma passing rate
(GPR) value; Dosiomics

24 plan complexity features; 851 dosiomic
featrues; plan complexity features, 3D dosiomic
feature; Combination of both

XGBoost models (plan, dosiomics, hybrid); Mean
absolute error (MAE), Correlation coefficient (CC),
SPRC, ANOVA test

MAE, CC: plan (4.6, 58), dosiomics (4.3,
0.61), hybrid (4.2, 63); Prognosis

Continued on next page
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Study;Dataset;
Total:Train+Test

Modality;Patient;
Predictive;Method

Features
(Clinical;Radiomic;Predictive)

Model
(Construct;Statistics)

Predictive performance(%);
Application Type

Placidi et al. (129); 8
centers; 30 different dose
distributions

Radiotherapy; Tumor patierns; the
features’ stability and capability;
Dosiomics

–; 38160 dosiomic featrues, 17 intensity-based
statistics, 100 radiomic features, Treatment
planning system (TPS); –

Various dose distributions, different dose calculation
algorithms, 2 different resolutions of the dose grid;
Coefficient of variation (CV), reproducibility/stability
(CV <3), sensitivity (CV >1)

Dosiomic characteristics are sensitive to
changes in dose calculation parameters
and consistent reporting of TPS, dose
calculations.Reproducibility, stability
and sensitivity

ACC=Accuracy;SEN=Sensitivity;SPE=Specificity;PRE=Precision;PPV=Positive predictive value;NPV=Negative predictive value;Dice coefficient=DC;Channel-wise Attention = CA;DL=Deep Learning;F CV=Fold cross-
validation;GTV=Gross tumor volume;LOOCV=Leave one out CV;RFs=Radiomic features;Cox-CNN=Convolutional Neural Network–based Cox proportional hazards regression;Contrast-enhanced CT images=ceCT;Non-
contrast-enhanced=non-ceCT;Laplacian of Gaussian=LoG;Dose-volume-histogram=DVH;Area under the receiver operating characteristic curve=AUROC;Area under the precision-recall curve=AUPRC;*=Unclear;Other=See
Table S2.
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