Supplementary Table 1. Composition of medium tested for callus induction from mature *Catalpa bungei* seeds.

Cotyledon				Com	ponents					
callusing	Basic	TDZ	ZT	IAA	2,4-D	6-BA	NAA	Sucrose	Frequency (%)	Significance*
medium	medium	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(g/L)		
CCM1	MS							30	0	g
CCM2	1/2MS	0.30		0.30				30	45.04 ±8.52	f
CCM3	1/2MS	0.30		0.50				30	53.57 ±7.25	d
CCM4	1/2MS	0.30		0.70				30	50.83±3.82	e
CCM5	1/2MS	0.30		0.90				30	44.05 ±7.79	f
CCM6	1/2MS	0.30		0.50	0.05			30	58.33±6.29	c
CCM7	1/2MS	0.30		0.70	0.05			30	70.99±7.03	b
CCM8	1/2MS	0.30		0.90	0.05			30	63.45 ±6.40	b
CCM9	1/2MS		0.30	0.30				30	53.41 ±7.41	d
CCM10	1/2MS		0.30	0.50				30	72.11 ±4.42	b
CCM11	1/2MS		0.30	0.70				30	90.84±2.20	a
CCM12	1/2MS		0.30	0.90				30	65.03±9.69	b
CCM13	1/2MS		0.20	0.50				30	88.40 ±4.06	a
CCM14	1/2MS		0.20	0.50				60	57.00±7.55	c
CCM15	1/2MS		0.20	0.50				90	87.73 ±4.86	a
CCM16	MS					0.50	0.20	30	96.41±1.84	a
CCM17	MS					0.70	0.30	30	94.70±2.62	a

MS, full-strength Murashige and Skoog basal medium; 1/2MS, half-strength MS; TDZ, Thidiazuron; ZT, Zeatin; IAA, Indole-3-acetic acid; 2,4-D, 2,4-Dichlorophenoxyacetic acid; 6-BA, 6-Benzylaminopurine; NAA, 1-Naphthylacetic acid.

The CCMs were gelled with 3 g/L gelrite, pH 5.8-6.0.

30 mature seeds of NJQ301were inoculated for each type of CCMs, repeated three times.

^{*} Different lowercase letters (a, b, c, d, e, f, and g) indicate the statistical differences between CCMs (P < 0.05).

Supplementary Table 2. Composition of medium tested for embryogenic callus induction of Catalpa bungei.

Embryogenic			Components			Frequency (%)	Cignificance*
callusing medium	Basic medium	6-BA (mg/L)	(L) NAA (mg/L) IBA (mg/L)		IAA (mg/L)		Significance*
ECM1	MS					0	d
ECM2	MS	0.30	0.10			2.22±0.92	b
ECM3	MS	0.60	0.10			3.50±0.19	b
ECM4	MS	0.60	0.15			3.58±0.22	b
ECM5	MS	0.75	0.15			3.54±0.19	b
ECM6	MS	0.60	0.20			3.58±0.21	b
ECM7	MS	1.00	0.20			1.11±0.92	c
ECM8	MS	2.00	0.30			0	d
ECM9	MS	3.00	1.00			0	d
ECM10	MS	4.00	1.50			0	d
ECM11	MS	0.50		0.05		0	d
ECM12	MS	1.00		0.05	0.10	1.11±0.93	c
ECM13	MS	0.10		0.50		0	d
ECM14	MS	0.50		1.00		1.15±0.99	c
ECM15	MS	1.00		1.50		0	d
ECM16	DKW	0.60	0.15			10.61 ±0.56	a

MS, Murashige and Skoog basal medium; DKW, Driver and Kuniyuki walnut basal medium; 6-BA, 6-Benzylaminopurine; NAA, 1-Naphthylacetic acid; IBA, Indole-3-butytric acid; IAA, Indole-3-acetic acid.

The ECMs were added with 30g/L sucrose and gelled with 3 g/L gelrite, pH 5.8-6.0. 30 calli developed from mature seeds were inoculated for each type of ECMs, repeated three times.

* Different lowercase letters (a, b, c, and d) indicate the statistical differences between ECMs (P < 0.05).

Supplementary Table 3. Composition of medium tested for callus induction from stem segments of *Catalpa bungei*.

Stem segment callusing		Comp	onents		C. bungei half-sib	No. of stem segments inoculated	No. of embryogenic
medium	Basic medium	6-BA (mg/L)	IBA (mg/L)	NAA (mg/L)	families		calli developed
SCM1	MS			0.1	NJQ303	45	0
SCM2	MS		0.1		NJQ304	45	0
SCM3	WPM			0.1	NJQ305	45	1
SCM4	WPM		0.1		NJQ306	45	0
SCM5	DKW			0.1	NJQ307	45	0
SCM6	DKW			0.2	NJQ308	45	1
SCM7	DKW			0.4	NJQ309	45	0
SCM8	DKW		0.1		NJQ310	45	0
SCM9	DKW		0.2		NJQ311	45	0
SCM10	DKW		0.4		NJQ312	45	0
SCM11	DKW	0.1		0.4	NJQ313	45	1

MS, Murashige and Skoog basal medium; WPM, woody plant basal medium; DKW, Driver and Kuniyuki walnut basal medium; 6-BA, 6-Benzylaminopurine; IBA, Indole-3-butytric acid; NAA, 1-Naphthylacetic acid.

The SCMs were added with 30g/L sucrose and gelled with 3 g/L gelrite, pH 5.8-6.0.

Supplementary Table 4. Callus induction frequency for NJQ305, NJQ308, and NJQ313 stem segments.

C. bungei half-sib	Stem segment callusing medium	Frequency (%)	Significance*	Embryogenic callusing medium	Frequency (%)	Significance*
NJQ305	SCM3	97.22±2.55	a	SCM3	39.89±3.19	a
NJQ308	SCM6	83.06±3.37	b	SCM6	29.51 ±1.90	b
NJQ313	SCM11	93.16±3.60	a	SCM11	36.99±2.38	a

The SCMs were added with 30g/L sucrose and gelled with 3 g/L gelrite, pH 5.8-6.0.

⁴⁵ stem segments of NJQ305, NJQ308 and NJQ313 were were inoculated on SCM3, SCM6 and SCM11 respectively, repeated three times.

^{*} Different lowercase letters (a and b) indicate the statistical differences between NJQ305, NJQ308, and NJQ313 (P < 0.05).

Supplementary Table 5. Composition of medium tested for differentiation and regeneration from embryogenic calli of Catalpa bungei.

Differentiating medium		Components					
	Basic medium	6-BA (mg/L)	NAA (mg/L)	KT (mg/L)	ZT (mg/L)	Frequency (%)	
DM1	MS					0	
DM2	MS	0.50		0.20		0	
DM3	MS	1.00		0.20		0	
DM4	MS		0.05	0.50	0.10	0	
DM5	MS	0.60	0.15		0.10	0	
DM6	MS	0.60	0.20		0.10	0	
DM7	MS	0.60	0.40		0.10	0	
DM8	MS	0.60	0.15		0.05	0	
DM9	MS	0.60	0.15		0.15	0	
DM10	MS	0.60	0.15		0.20	0	
DM11	DKW	0.60	0.15		0.20	100 ±0.00	

MS, Murashige and Skoog basal medium; DKW, Driver and Kuniyuki walnut basal medium; 6-BA, 6-Benzylaminopurine; NAA, 1-Naphthylacetic acid; KT, kinetin; ZT, zeatin.

The DMs were added with 30g/L sucrose and gelled with 3 g/L gelrite, pH 5.8-6.0.

³⁰ embryogenic calli clumps were inoculated for each type of DMs, and repeated three times.

Supplementary Table 6. Composition of medium tested for shoot cutting rooting of Catalpa bungei.

Rooting medium		Components		Rooting frequency (%)	Significance*
	Basic medium	IBA(mg/L)	NAA(mg/L)		
RM1	1/2MS			0	f
RM2	1/2MS	0.01		78.89±5.09	b
RM3	1/2MS	0.05		83.33±5.77	a
RM4	1/2MS	0.10		86.67±6.67	a
RM5	1/2MS		0.01	41.11±6.94	e
RM6	1/2MS		0.05	55.56±3.85	d
RM7	1/2MS		0.10	75.56±6.94	c
RM8	1/2MS	0.10	0.10	87.66±3.75	a
RM9	DKW	0.10	0.10	90.88±4.05	a

^{1/2}MS, half-strength MS; DKW, Driver and Kuniyuki walnut basal medium; IBA, Indole-3-butytric acid; NAA, 1-Naphthylacetic acid. The RMs were added with 20g/L sucrose and gelled with 3 g/L gelrite, pH 5.8-6.0.

³⁰ shoots were inoculated for each type of RMs, repeated three times.

^{*} Different lowercase letters (a, b, c, d, e and f) indicate the statistical differences between RMs (P < 0.05).

Supplementary Table 7. Effect of *Agrobacterium* concentration.

	Effect facto				
Agrobacterium strain	OD ₆₀₀ value of <i>Agrobacterium</i> resuspesions	Infection duration	Co-cultivation time	Transformation frequency (%)	Significance*
EHA105	0.2	20 min	48 h	27.53±5.19	d
EHA105	0.4	20 min	48 h	80.25 ±5.35	a
EHA105	0.5	20 min	48 h	92.03 ±2.06	b
EHA105	0.6	20 min	48 h	97.65 ±2.04	a
EHA105	0.8	20 min	48 h	37.13 ±4.04	c
EHA105	1.0	20 min	48 h	17.93 ±3.58	e

DM11 was the best-selected medium for shoot regeneration, which is listed in Supplementary Table 5.

³⁰ transformed embryogenic callus clumps were inoculated on DM11 containing 150mg/L kanamycin for each experiment, and repeated three times.

^{*} Different lowercase letters (a, b, c, d, and e) indicate the statistical differences between different bacterial concentrations (P < 0.05).

Supplementary Table 8. Effect of co-cultivation time.

	Effect facto	Transformation			
Agrobacterium strain	OD ₆₀₀ value of <i>Agrobacterium</i> resuspesions	Infection duration Co-cultivation time		frequency (%)	Significance*
EHA105	0.6	20 min	24 h	91.86±1.95	a
EHA105	0.6	20 min	48 h	95.52±1.89	a
EHA105	0.6	20 min	72 h	57.65 ±2.72	b

DM11 was the best-selected medium for shoot regeneration, which is listed in Supplementary Table S5.

³⁰ transformed embryogenic callus clumps were inoculated on DM11 containing 150mg/L kanamycin for each experiment, and repeated three times.

^{*} Different lowercase letters (a, and b) indicate the statistical differences between different co-cultivation times (P < 0.05).

Supplementary Table 9. Effect of Agrobacterium strains and infection duration.

	Effect factor		Transformation		
Agrobacterium strain	OD ₆₀₀ value of <i>Agrobacterium</i> resuspesions	Infection duration Co-cultivation time		frequency (%)	Significance*
EHA105	0.6	10 min	48 h	70.54±6.47	c
EHA105	0.6	20 min	48 h	95.39 ± 1.79	a
EHA105	0.6	30 min	48 h	77.16±4.10	bc
GV3101	0.6	10 min	48 h	27.78±5.09	d
GV3101	0.6	20 min	48 h	71.60±5.66	c
GV3101	0.6	30 min	48 h	83.80±3.33	b

DM11 was the best-selected medium for shoot regeneration, which is listed in Supplementary Table 5.

³⁰ transformed embryogenic calli clumps were inoculated on DM11 containing 150mg/L kanamycin for each experiment, and repeated three times.

^{*} Different lowercase letters (a, b, c, and d) indicate the statistical differences between different combinations of Agrobacterium strain and infection duration (P < 0.05).

Supplementary Table 10. Transformation efficiency of Catalpa bungei.

Replicates	No. of detected plants	No. of GUS positive plants	Positive frequency (%)	Average positive frequency (%)
1	103	95	92.23	
2	35	34	97.14	
3	26	22	84.62	92.31±4.92
4	25	24	96.00	
5	95	87	91.58	

Supplementary Table 11. The summary of sequence data from next generation sequencing.

Samples	Clean reads	Clean bases (Gb)	Depth (×)	GC (%)	Q20 (%)	Q30 (%)
WT	151,906,680	22,684,883,644	29.72	36.27	97.58	92.39
#2	149,360,140	22,325,631,422	29.24	39.29	97.69	92.84
#3	130,147,192	19,453,884,878	25.48	40.51	97.39	91.83
#7	160,671,490	24,004,434,282	31.44	36.47	97.85	93.20

Supplementary Table 12. The junction reads obtained by next generation sequencing in the genome of transgenic and wild-type *C.bungei*.

Plant	Position (s) in the reference genome	gDNA flanking the insert	Inserted T-DNA: position (s) in T- DNA vector	Estimated insert size (bp)
WT				
#2	Group 4: 25,512,704	Left side	LB: 1,339-1,395	At least 1,395
#3	Group 1: 2,451,212 Group 6: 25,511,359	Right side	RB-CaMV poly (A) signal: 4875-5049	At least 175
#3	Group 0: 1,663,775	Left side	LB-Lac operator (1,204-1,220)+ Lac promoter (1,228- 1,258)	At least 1,258
#7	Group 3: 21,586,673	Left side	LB- Lac promoter (1,228-1,258) + CAP binding site (1,273- 1,294)	At least 1,294
#7	Group 5: 32,706,411	Left side	LB: 1,354-1,395	At least 1,395

⁻⁻ means that no junction read was detected in the wild-type genome.