Supplementary Material
[bookmark: _GoBack]S1. Computational algorithm of ARZIMM
[bookmark: _Hlk75205213]Maximization of the penalized log-likelihood function corresponding to equation (2) with respect to   is a computationally challenging task. This is mainly because both the integral with respect to the random effects and the zero-inflated structure do not have analytical solutions. 
The Expectation-Maximization (EM) algorithm [1] has been traditionally used under a zero-inflated model in which the labels of zeros are treated as "missing data". Define the Bernoulli random variable  if  is drawn from zero state,  if  is drawn from distribution . Thus the “complete” data for the EM algorithm are . Here,  play the role of missing data, denoted as . Based on , the complete data likelihood is given by
	
where .
Laplace approximations are widely used for maximum likelihood estimation of parameters involving the integral of random effects. Generally, the Laplace approximation is used to calculate integrals of the form.

where , can be simply defined as  in our optimization problem, is a known function of variable . Let  then the Laplace approximation is given by  where . By implementing a Laplace approximation to (2) that 
	
the estimator can be obtained via EM algorithm that calculate the expectation of  and compute parameters iteratively as algorithm 1.
	Algorithm 1 computational algorithm for ARZIMM

	Given :
Repeat for h=0,1,..  
E-step (Outer): calculate the expectation of .   
Repeat for s=0,1,...  
Given , where :  
M-step (Inner): solve the following minimization problem: 
	.
 E-step (Inner): estimate , that for m-th element 
	
           until convergence. Calculate the expectation of .  
          M-step (Outer): solve optimization problem to obtain the estimate
	
until convergence.  


S2.  Competing methods
S2.1 Multivariate autoregression method (MAR)
Multivariate autoregression (MAR(1)) models are applied to estimate the ecological interactions after a log transformation of ecological time series counts[2], formulated as

where  is a vector of (log-transformed) population abundances at time ,  is a vector of constants,  is a matrix whose elements  give the effect of the abundance of species  on the per capita population growth rate of species , and  is a vector of process errors that has a multivariate normal distribution with mean vector  and covariance matrix . 
We implement the regularized maximum likelihood (ML) estimation procedure to select variables and estimate parameters simultaneously. Assuming that the true underlying effects  are sparse, we advocate a Lasso-type approach, which adds an -penalty for the effects to the likelihood function. The tuning parameters are selected using Bayesian information criterion (BIC). 
S2.2 Poisson auto-regression method (Poisson)[2]
In order to model the longitudinal sparse microbial counts from a study cohort, let  denote the observed count of bacterial taxon  for subject  at time point . Consider a Poisson distribution of microbial count that , where  represents the Poisson distribution with the parameter . Considering the longitudinal microbial counts, the Poisson autoregression is performed as: 
	,
Where  and .
Similar regularized ML estimation procedure is implemented by adding an -penalty for the effects to the likelihood function. Bayesian information criterion (BIC) is applied for the tuning parameters selection.
S2.3 The Microbial Dynamical Systems INference Engine (MDSINE) 
To infer dynamical system models of the microbiota from high-throughput time-series data.The Microbial Dynamical Systems INference Engine (MDSINE)[3] software package implements the extended generalized Lotka-Volterra (gLV) equations model for  taxa measured in  subjects, the rate of change of the concentration of taxon  in subject , expressed as:
	
where  represent unbounded growth rates, the  represent pair-wise microbe-microbe interactions, and the  represent effects of  perturbations. The functions  are binary valued, indicating if the given perturbation is present at time .  represents an estimate of the concentration of taxon  in subject  at time point .
The MDSINE software is is publicly available [3] 
S3. Ergodicity and stability measures
S3.1 Ergodicity
In this section, we establish the existence and uniqueness of the invariant distribution of the observation process  based on ARIZMM, and shows the ergodicity and existence of some moments for its  stationary distribution. The results are formed under the assumption that the time independent parameters  and  are known. To derive the general conditions, we introduce an unobserved Markov process  based on a measurable function  and a Markov kernel  from  to , which satisfies the following recursions:     
		(S1)
where  denotes the Borel -algebra for . Specifically,  is defined as  satisfying (3) and  is a zero-inflated Poisson distribution satisfying (1) where each dimension  is independently distributed as a zero-inflated Poisson with parameters . We will give the assumptions so that the unobserved Markov process  converge to the stationary distribution. Then, we will show the existence of a strict-sense stationary ergodic process on , the solution to the recursion (S1). Finally, we will derive the conditions meeting the assumptions for stationarity.
Based on the theory of Markov chains without irreducibility assumption to prove the existence of a stationary distribution, the existence of a stationary distribution has been investigated for the log-linear Poisson autoregression model[4]. We follow this approach and extend it to a zero-inflated multivariate version. 
For a general Markov chain  on state space  with -algebra  define  for  to be the -step transition probability starting from state . Define for all ,  as the law of  that     
		(S2)
where . Consider the following assumptions:
(A1) The Markov kernel  is a Feller semigroup. Moreover, there exist a compact set , ++ and a function + such that 
	
(A2) The Markov kernel  has a reachable point.
(A3) There exist a kernel  on , a measurable function , and a measurable function  such that for all , 
	
where  denotes the euclidean distance. There exists  such that for all  
	
	
Moreover, for all , there exists  such that 
	
where  is the open ball of radius  with respect to  and centered at .
Theorem 1. Assume that all eigenvalues of matrix  lie inside the unit circle. Then, the assumptions (A1)—(A3) hold. 
The proof can be easily adapted from [3]. 
Theorem 2. Assume that (A1)—(A3) hold. Then, the Markov kernel  admits a unique invariant probability measure.  
Lemma 1. Assume that the Markov kernel  admits an invariant kernel  and that there exist a measurable function + and real numbers  such that . Then, 
	
Proposition 1. Assume that the Markov kernel  admits a unique invariant probability measure. Then, there exists a strict-sense stationary ergodic process on ,, the solution to the recursion of the model.  
Proof. The property of asymptotically strong Feller Markov chains has been investigated in Hairer et al. [5]. The following theorem is taken from Theorem 3.16 in Hairer et al. [5]. 
Definition 1. A Markov transition semigroup  on a Polish space  is called asymptotically strong Feller at  if there exists a totally separating system of pseudo-metrics  for  and a sequence  such that     
		(S3)
Theorem 3. Assume that  is Markov semigroup satisfying (S3) and admits reachable points . Then there exists at most one invariant probability measure for .
S3.2 Stability measures 
Return rate 
The first stability measure is the return rate. For a system, where a stationary distribution exists, the more rapid the convergence, the more stable the system. Following Ives et. al [2], we measure the rate of return by the rate at which the transition distribution converges to the stationary distribution from an initial condition . Previously, we established the existence of the stationary distribution for the observation process  based on an unobserved Markov process  with a stationary distribution. Therefore, we consider the return rate of the unobserved Markov process . Similar to the MAR(1) process, the return rate of the mean vector of  is governed by , and  limits the return time of the mean to .
Reactivity 
The second stability measure is the reactivity, which assesses how strongly population-level microbiome abundances are pulled towards the mean of the stationary distribution. To quantify the reactivity, Ives et. al [2] considered the expectation over the stationary distribution of the change in distance from the mean of the stationary distribution between successive time steps. Similar to return rate, we consider the reactivity of the unobserved Markov process . Let  be the difference between  and the mean of the stationary distribution. Therefore, the reactivity is defined as 
,
where  denotes the squared Euclidean distance. To obtain the reactivity of the system averaged over a long time period, we can let the distribution of  be the stationary distribution , and thus, the reactivity can be shown as


where  is the dominant eigenvalue of the matrix . Thus,  indicates the "worst-case" reactivity of a system. 
S4.  Simulation setting 
S4.1. Simulation setting for the zero part
We generated the longitudinal absolute counts from zero-inflated Poisson distribution with parameters  and  for each taxon. Since our focus is on the estimation of the interaction matrix  which depends on the non-zero part, we adopted a simple simulation design for the zero inflation proportions  We ignored the individual variations in  by dropping the random effect term  in equation (1). In the simulation design, in order to mimic the observed sparsity in real data, we set the zero inflation proportions  for 20 taxa as =. In order to test our algorithm on estimating the parameters in zero inflation part along with the non-inflation part, based on the model , we constructed six binary covariates  with  , and  when , and  when. The elements of  were set to be sparse with informative coefficients to be 5.
S4.2. Simulation setting for the mis-specified model
[bookmark: _Hlk90991025]In this section, we conducted simulation experiments to verify the robustness of ARZIMM under model misspecification. Based on Scenario 4, where both zero-inflated structure and heterogeneity are modeled, we added a random term to the zero inflation proportions  to allow the zero inflation proportions , where  and ’s -th element (1) ; or  (2) , to vary along the time. Here, , the strength of variation, was set based on the coefficient of variation estimates using MIME data as we reported in the Discussion.  In this mis-specified simulation, we evaluated the variable selection performance for ARZIMM, Poisson, and MAR in terms of true positive rate (TPR) and false positive rate (FPR) and present the results in Supplementary Figure S3. The results show that the moderate temporal variation in probability of zero count does not affect ARIZMM’s performance much in capturing the informative interactions by estimating B when the absolute effect strengths of interaction matrices is high(FDR<0.05) or medium (FDR <0.15).
5. Supplementary Tables and Figures 
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Supplementary Table 1. Simulation results for all settings under four scenarios. Poisson refers to the penalized Poisson auto-regression model and MAR refers to penalized log-normal multivariate auto-regression model. Reported value are medians (IQRs) of mean normalized squared error score (MNSES) calculated over 500 simulations for each setting.
	Methods
	ARZIMM
	Poisson
	MAR

	Effect size
	High
	Median
	Low
	High
	Median
	Low
	High
	Median
	Low

	Scenario 1

	n
	T
	Median (IQR)

	20
	20
	0.99
	0.99
	0.99
	1.00
	1.00
	1.00
	76 
	74 
	74

	
	
	(0.98-0.99)
	(0.98-1.00)
	(0.99-1.00)
	(0.99-1.01)
	(0.99-1.00)
	(0.99-1.01)
	(53-120)
	(53-122)
	(53-131)

	50
	10
	0.98 
	0.98
	0.98
	1.01
	1.00
	1.00
	78 
	77 
	84

	
	
	(0.98-0.99)
	(0.98-0.99)
	(0.98-0.99)
	(1.00-1.01)
	(0.99-1.00)
	(0.99-1.00)
	(55-133)
	(55-134)
	(59-139)

	Scenario 2

	n
	T
	Median (IQR)

	20
	10
	0.97 
	0.98 
	0.98
	1.51 
	1.33 
	1.23
	70 
	56 
	57

	
	
	(0.96-1.48)
	(0.96-1.09)
	(0.97-0.99)
	(1.50-1.53)
	(1.32-1.35)
	(1.22-1.24)
	(49-109)
	(40-86)
	(38-94)

	20
	20
	0.99 
	1.06 
	1.00
	1.49 
	1.34 
	1.25
	91 
	80 
	79

	
	
	(0.98-1.36)
	(0.98-1.08)
	(0.99-1.01)
	(1.48-1.50)
	(1.33-1.35)
	(1.23-1.26)
	(66-156)
	(57-130)
	(57-135)

	50
	10
	0.96
	1.09 
	1.17
	1.57 
	1.36 
	1.26
	89
	78
	80

	
	
	(0.96-0.97)
	(1.05-1.15)
	(1.14-1.21)
	(1.56-1.62)
	(1.36-1.37)
	(1.26-1.27)
	(63-148)
	(54-124)
	(55-127)

	50
	20
	0.98 
	1.13
	1.14
	1.54 
	1.36 
	1.26
	117 
	116 
	114

	
	
	(0.98-0.98)
	(1.07-1.17)
	(1.11-1.19)
	(1.53-1.56)
	(1.36-1.37)
	(1.26-1.26)
	(82-191)
	(79-209)
	(79-179)

	Scenario 3

	n
	T
	Median (IQR)

	20
	10
	0.92
	0.87 
	0.88
	27.6 
	19.4 
	19.6
	35012 
	13069 
	9128

	
	
	(0.90-0.96)
	(0.85-0.91)
	(0.85-0.94)
	(22.0-32.8)
	(15.4-23.3)
	(15.5-23.3)
	(10154-101650)
	(6552-24509)
	(3320-16752)

	20
	20
	0.94  
	0.92 
	0.92
	41.3 
	30.0
	29.4
	144005 
	32263 
	17706

	
	
	(0.92-1.30)
	(0.90-0.94)
	(0.90-0.93)
	(35.6-45.4)
	(26.5-32.5)
	(26.4-31.6)
	(64379-313924)
	(20626-58587)
	(10881-27450)

	50
	10
	0.95 
	0.95
	0.95
	38.5 
	28.0
	26.8
	131596 
	44419 
	24869

	
	
	(0.94-0.97)
	(0.94-0.96)
	(0.94-0.96)
	(33.4-41.3)
	(26.3-29.4)
	(25.1-28.1)
	(63797-242634)
	(27851-83709)
	(16184-44889)

	50
	20
	0.98 
 
	0.98
	0.98
	43.6 
	30.0 
	28.5
	252042 
	63645
	39205

	
	
	(0.97-0.98)
	(0.97-0.98)
	(0.97-0.98)
	(42.0-44.8)
	(29.3-30.8)
	(27.6-29.1)
	(164342-395273)
	(46459-107196)
	(27347-70133)

	Scenario 4

	n
	T
	Median (IQR)

	20
	20
	0.95  
	0.92 
	0.84
	43.9 
	28.5 
	28.7
	150843 
	85354
	43717

	
	
	(0.91-2.32)
	(0.89-0.96)
	(0.83-0.86)
	(32.5-51.4)
	(25.6-31.0)
	(25.0-30.9)
	(55236-446842)
	(45584-169844)
	(25602-83638)

	50
	10
	1.32 
	0.87 
	0.84
	36.5 
	28.3
	28.0
	55616 
	67888
	48800

	
	
	(1.24-1.41)
	(0.86-0.89)
	(0.83-0.86)
	(31.8-42.8)
	(26.3-30.0)
	(26.2-29.5)
	(30732-105802)
	(43224-120112)
	(33059-89420)




[image: ]Supplementary Figure 1. Simulation results of four scenarios for (A) 20 subjects with 10 time points; (B) 20 subjects with 10 time points; (C) 50 subjects with 10 time points. Poisson refers to the penalized Poisson auto-regression model and MAR refers to penalized log-normal multivariate auto-regression model. False Positive Rate and True Positive Rate are reported with mean and 95% interval over 500 simulations for four scenarios to have: (1) no zero-inflated structure and no heterogeneity; (2) heterogeneity but no zero-inflated structure; (3) zero-inflated structure but no heterogeneity; (4) both zero-inflated structure and heterogeneity.
[image: ]
Supplementary Figure 2. Matthew correlation coefficient and F-score over 500 simulations for four scenarios for (A) 20 subjects with 10 time points; (B) 20 subjects with 10 time points; (C) 50 subjects with 10 time points; (D) 50 subjects with 20 time points. Poisson refers to the penalized Poisson auto-regression model and MAR refers to penalized log-normal multivariate auto-regression model. False Positive Rate and True Positive Rate are reported with mean and 95% interval over 500 simulations for four scenarios to have: (1) no zero-inflated structure and no heterogeneity; (2) heterogeneity but no zero-inflated structure; (3) zero-inflated structure but no heterogeneity; (4) both zero-inflated structure and heterogeneity.
[image: ]
Supplementary Figure 3. Simulation results of mis-specified model for (A) 20 subjects with 10 time points; (B) 20 subjects with 20 time points; (C) 50 subjects with 10 time points; and (D) 50 subjects with 20 time points.  Instead of true zero inflation proportions , the mis-specified zero inflation proportions  are used to simulate absolute abundances. Poisson refers to the penalized Poisson auto-regression model and MAR refers to penalized log-normal multivariate auto-regression model. False Positive Rate and True Positive Rate are reported with mean and 95% interval over 500 simulations for 2 scenarios to have  and ’s -th element: (1)  and (2) .
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