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1 SUPPLEMENTARY METHODS
1.1 Electrophysiology
1.1.1 Numerical Methods for the Monodomain Equation

Simulation of electrical excitation and wave propagation across the tissue were calculated as part of our
electro-mechanical simulation framework (Gerach et al., 2021). The electrophysiological part is hereby
based on the verified framework acCELLerate (Seemann et al., 2010; Niederer et al., 2011). Thus, as
published, the transmembrane voltage Vm across the tissue was governed by the monodomain model, a
reaction–diffusion equation:

∇ · (σ∇Vm) = β

(
Cm

∂Vm

∂t
+ Iion

)
(S1)

with σ the conductivity tensor, β = 140, 000 m−1 the myocyte surface-to-volume ratio, Cm = 0.01 F/m2

the cell membrane capacitance, and Iion the accumulation of ion currents across the membrane (i.e., currents
between intra- and extracellular space), calculated using different myocyte electrophysiology models.

The conductivity tensor σ comprises a longitudinal (σ`, conductivity along myocyte direction) and
transverse (σt) component. These components were chosen such that physiological conduction velocities
(CV) of 800 mm/s along myocyte orientation and 550 mm/s in the transverse directions were achieved (as
in Keller et al. (2011)). Optimizing σ accordingly in a simple ‘stick’ geometry, composed of tetrahedra of
the same average edge length as the heart mesh, resulted in σ` = 0.215 S/m and σt = 0.095 S/m (anisotropy
factor between longitudinal and transverse direction of 2.65). The same conductivity values were used for
atrial and ventricular tissue.

The finite element method was used to spatially discretize the monodomain equation on the tetrahedral
mesh of the heart. The Crank-Nicolson method was used for temporal discretization and the problem was
solved in a time-stepping manner (with ∆t = 50 µs). The mathematics behind our discretization methods
are fully documented in Gerach et al. (2021). Initial values for Vm were locally assigned from the respective
myocyte models which are detailed below.

The open-source linear algebra toolkit PETSc was used to solve the discretized equation for every time
step, using the Gauss-Seidel method for preconditioning and the minimum-residual method (MINRES)
as Krylov-subspace solver (Paige and Saunders, 1975; Balay et al., 2021). A time step was considered
converged if the residual error of the iteration was below 10−8 or if the relative change in residual error
was below 10−12.

Our scheme made use of the full mass matrix and evaluated ion currents at tetrahedral nodes, which has
been shown to produce low errors in CV even at ‘moderate’ spatial resolutions such as ours (Pezzuto et al.,
2016, cases ‘LHS full, RHS interpolated, full’ and ‘θlhs = θrhs = 0’).

1.1.2 Forward Problem
For each time step, the forward problem posed by

∇ · ((σi + σe)∇Φe) = −∇ · (σi∇Vm) (S2)
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was solved for Φe, the extracellular potentials at each mesh node. Intra- and extracellular conductivity
tensors (σi and σe, respectively) were assigned organ-specific values (supplementary table S1). Our model
includes conductivities for all organs (except for skeletal muscle which could not be segmented from MRI)
that were previously identified as having large influences on the ECG (Keller et al., 2010).

The discretized equation was solved using PETSc with symmetric Gauss-Seidel preconditioning and
MINRES as Krylov-subspace solver. Convergence criteria were an absolute residual value below 10−50 or
a relative residual improvement of less than 10−10.

Table S1. Tissue conductivities used for body surface potential map (BSPM) and ECG calculations.
Where applicable, directions longitudinal and transverse refer to the local myocyte orientation. Other
conductivities were treated as isotropic.

Tissue Conductivity (S/m) Source
Fatty tissue 0.035

Gabriel et al. (1996)2

Skin 0.0002
Blood1 0.7
Lung 0.03
Intestines 0.01
Kidney 0.05
Liver 0.02
Spleen 0.03
Heart longitudinal transverse

intracellular 0.3 0.031525 Colli Franzone et al. (2005)

extracellular 0.15 0.05 Gabriel et al. (1996)2

Keller et al. (2010) (anisotropy)

1 Only modelled in the heart cavities.
2 Extrapolated to 0 Hz using the Cole-Cole equation (Cole and Cole, 1941).

1.2 Mechanics
1.2.1 Material Law

As described in 2.3.1 the material law by Usyk et al. (2000) is used within this work to describe the
passive stress-strain relationship in the ventricles as well as atria. Its energy function is given by:

W = c(eQ − 1) +
κ

2
(det(F )− 1)2

with

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + bfs(E

2
fs + E2

sf) + bfn(E2
fn + E2

nf) + bsn(E2
sn + E2

ns),

(S3)

where F is the deformation tensor andE the Green strain tensor in local myocyte orientation with f, s, and
n referring to the orthonormal main myocyte, sheet, and sheet-normal axes, respectively. The parameters of
the material law were set according to Gurev et al. (2015) (c = 880 Pa, bff = 6, bss = 7, bnn = 3, bfs = 12,
bfn = 3, bsn = 3, and κ = 106 Pa).

For all other types of tissue, the energy function was characterized by using a neo-Hookean material, as
proposed by Gerach et al. (2021): Other tissue types were characterized using a neo-Hookean material, as
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proposed by by Gerach et al. (2021). Its energy function is given by:

W = µ(tr(C)− 3)− µ ln(det(C)) +
κ

2
ln2(det(C)), (S4)

with C being the right Cauchy–Green tensor, κ being 103 Pa for all tissue types and µ set to 105 Pa for
valves, 3725 Pa for fatty tissue, 104 Pa for all vessels, and 104 Pa for the surrounding tissue.

1.2.2 Surrounding Tissue
As described in 2.3.2, within in this work, we use a friction-less contact problem to emulate the influence

of the pericardial sac on the motion of the heart. The used approach is based on the work by by Fritz
et al. (2014). For that two surfaces are defined, the first one being the inside of the non-cardial tissue layer
surrounding the heart and the other the epicardial surface of the heart. The resulting acting force, in normal
direction, on the respective elements of the two surfaces is the regulated by the gap function (gN). Within
the scope of this work the original definition of said gap function, as defined by Fritz et al. (2014) in eq. 24,
was replaced with a non-linear continuous function:

gN(ξ) = e2 x(ξ)2 e−2x(ξ) nm with x(ξ) =
dFmax

||xs(ξ)− xm(ξ)||
, (S5)

where nm is the normal of the epicardial surface element, xm its projection in normal direction to the
closest non-cardiac tissue surface element, xs the projection in normal direction of the surrounding tissue
surface element to the epicardium, and dFmax := 1 cm the distance at which the attraction force is to be
maximal (the attraction force will reduce when surpassing this distance as to avoid numerical instability
during initialization due to overly large attraction forces). A comparison between the originally proposed
gap function by Fritz et al. (2014) and or new one can be seen in fig. 1.2.2.

Figure S1. Gap function of the frictionless contact problem, multiplied by the maximal attractile force ε,
which governs the acting force the epircardial surface of the heart and the inside surface of the surrounding
tissue

1.2.3 Circulatory system
Within the scope of this work the circulatory system is modeled as a fully coupled closed-loop lumped

model, as proposed by Gerach et al. (2021), see 2.3.2 of the main manuscript. Therefore, all distinct parts
of the circulatory system are represented by a series of diodes, resistors, and capacitances. see fig. S2.
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The finite element mechanics model and the lumped circulation model are then coupled with the goal of
iterative adaption of the respective cavity pressures such that the in- and outflows match one another. To
avoid accumulation of volume errors over time, the absolute difference in cavity volumes on either side is
minimized instead of the difference in incremental volume changes. Therefore, for every time step, the
pressure for each cavity is first extrapolated from previous pressures using a fourth order Adams-Bashforth
scheme. If the resulting volume differences are not within a certain threshold (10−7 mL), the cavities’
pressures get perturbed one by one to calculate the compliance matrix of the circulatory system. Using
Newton’s method, the pressures can then be estimated once more. For all following iterations within one
time step, the modified Newton approach from Kerckhoffs et al. (2007) is used, which only perturbs the
pressures of the lumped model, so that the compliance matrix of the circulatory system can be updated
without having to recompute multiple solutions to the finite element model. The parameters as published
by Gerach et al. (2021) were adjusted interactively (see table S2) to fit the different geometry as well as the
different heart rate.

LA LV CaoRao,valve RaoRmitral

Rtricus

Ras

Cvs
RvsRpa,valveRpa

Cap

Rpa

Cvp Rvp

Pulmonary circulation Systemic circulation

RV RA

Figure S2. Closed-loop model of the circulatory system. Distributed vessel parameters are lumped into
discrete resistances and compliances. Parameters given in table S2. Colors represent oxygenated (red) and
deoxygenated (blue) blood.
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Table S2. Parameters of the lumped closed-loop model as shown in fig. S2. Rmitral: mitral valve resistance,
Rao,valve: aortic valve resistance, Rao: aortic resistance, Cao: aortic compliance, Ras: arterial systemic
resistance, Cvs: venous systemic compliance, Rvs: venous systemic resistance, Rtricus: tricuspid valve
resistance, Rpa,valve: pulmonary artery valve resistance, Rpa: pulmonary artery resistance, Cpa: pulmonary
artery compliance, Rap: arterial pulmonary resistance, Cvp: venous pulmonary compliance, Rvp, Vao, Vvs,
Vpa and Vvp are unstressed volumes not contributing to the pressure across the corresponding compliance
and Vtotal is the total blood volume. Resistances (R) in mmHg · s · mL−1, compliances (C) in mL ·
mmHg−1 and volumes (V ) in mL

Parameter Value
Rmitral 0.003
Rao,valve 0.006
Rao 0.015
Cao 2.0
Ras 0.9
Cvs 100.0
Rvs 0.03
Rtricus 0.003
Rpa,valve 0.003
Rpa 0.02
Cpa 10.0
Rap 0.07
Cvp 15.0
Rvp 0.03
Vao 800
Vvs 2850
Vpa 150
Vvp 200
Vtotal 5500
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