

## Supplementary Material

# Exogenous and endogenous phosphoethanolamine transferases differently affect colistin resistance and fitness in *Pseudomonas aeruginosa*

Matteo Cervoni<sup>1#</sup>, Alessandra Lo Sciuto<sup>1#</sup>, Chiara Bianchini<sup>1</sup>, Carmine Mancone<sup>2</sup>, Francesco Imperi<sup>1,3\*</sup>

<sup>1</sup> Department of Science, Roma Tre University, Rome, Italy

<sup>2</sup> Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy

<sup>3</sup> IRCCS Fondazione Santa Lucia, Rome, Italy

<sup>#</sup>These authors contributed equally to the work.

\* Correspondence: Francesco Imperi, <u>francesco.imperi@uniroma3.it</u>

### **1.** Supplementary Figures and Tables

#### **1.1.** Supplementary Figures



**Supplementary Figure 1.** MALDI-TOF spectra of lipid A extracted from PAO1 pME*eptA* or PA14 pME*eptA* cultured in the absence or presence of IPTG at 0.125 or 0.5 mM. The m/z values of peaks corresponding to phosphoethanolaminated lipid A forms are highlighted in yellow. Spectra are representative of three biological replicates giving similar results.



**Supplementary Figure 2.** Growth curves of (A) PAO1 or (B) PA14 carrying pME6032, pMEmcr-1 or pME*eptA* in the presence of increasing IPTG concentrations (0-2 mM). Data represent the mean ( $\pm$  standard deviation) of three independent experiments.

**Supplementary Figure 3.** Full-length alignment of selected EptA orthologs from *Acinetobacter* baumannii (SSI74383.1), Enterobacter cloacae (WP\_059385803.1), Escherichia coli (OWW57050.1), Helicobacter pylori (WP\_189394748.1), Klebsiella pneumoniae (CCI78008.1), Neisseria meningitidis (AKM91408.1), Pseudomonas aeruginosa (WP\_003113468.1), Salmonella enterica (QNL54535.1), Shigella flexneri (QLG55136.1), Vibrio cholerae (TYC39410.1). The MCR-1 protein has been included as control (WP\_049589868.1). The highly conserved catalytic residue mutated in the EptA<sup>T278A</sup> variant and the 22 residues deleted in the EptA<sup>ΔC-ter</sup> variant are highlighted with a black box and a red box, respectively.

3

| 176<br>176<br>176<br>176<br>176<br>176<br>176<br>176<br>176<br>176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 328<br>351<br>351<br>352<br>347<br>342<br>346<br>346<br>346<br>346<br>346<br>346<br>346<br>346<br>346<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 492<br>519<br>513<br>513<br>513<br>513<br>513<br>513<br>518<br>518<br>518<br>518<br>518<br>518<br>518<br>518<br>518<br>518 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>MaSI FHLKELKPLSCLQAGL VSLTFGV VHFDLFAVYXESNOYSFTAMMWV FCVMGLFLALGLSSSLMBHSATYSFNDYAFTSAVFLINENMGNUTTITHEL LGFLSVKLFVFTVVGFUPGVTYZPLTATAULTFFDXXAFT</li> <li>MASI FHLKELKPLSCLQAGL VSLTFGVLVASVAVEL TATAULTFFDXLSSTSTAMMVV FCVMGLFLALGLSSLMBHSATYSFDYAFTSALTILLPVAFS</li> <li>MAGTTSVMYRSVSFFVUVASVAVEL TATAULTFFDXLLAVFTATAULTFFDXLSSLSLMBHSATYSFDYSTVADTTILLAGATTYFTUATAFTMATLGLVVLSLLVAFVDYAPTDATCSXAFTATAULTFFDXLSLSLMBHSALTLLPVAFS</li> <li>MAGTTSVMYRSVSFFVUVASVAVELTATAULTFFDXLLAVFTATAULTFFDXLSLSLMFTATALLLFTATAULTFLANGLANTSVFTDYATTATAULTGLVLSLLVAFVACDTAUFTATAULTFFDXLSLSLMBHSALTLETATAULTSVXVSLSLSLMBHSVDYSTVDTLGALTATAULTSVXVLGAGLAVAVAQUAFFDXLVXSVXTGVLGAS</li> <li>MAPTFSVMYRSVSFFVUVASVAVELTATAULTTATAULTFFDXLLAVFTATALLLLAAGTTFTLLLFLMAATTATAULTEGALSFYFNTTGVTSLSLSLMBHSALTATAULTATATAULTATATAULTATATAULTVVAVE</li> <li>MAPTFSVMXLGALMSTATATAULTATATAULTATATATAULTATATATAULTLLAAGTTFTLLLFLAAGTTFFTLLFLVLAAGALAMFNAVANA</li> <li>MSLAR -ANFBLLTLUSLGALMSTATAAAUATTFFVLLLTLAAGTTFFTLLFLVLAAGALAMFNAVANA</li> <li>MSLAR -ANFBLLTLUSLGALMSTATAAVELHFFMISTAAVELHFFMISTATATATAUNDTGVFTSAZATTAFAALAAVAAVAAUATTFFVLLTVLAAGALAMTFFVLLVLVAAVA</li> <li>MSLA -ANFBLLTLUSLGALMSTATATAAVELHFFMISTAAVELHFFMISTATATATAVAVALGALAAVAANATTFFVLLVLVAAVA</li> <li>MSLA -ANFBLLTLUSLGALMSTATATAAVELHFFMISTAAVELHFFMISTAAVAAVAAAVAAAVAAAVAAAAAAAAAAAAAAAAAAA</li></ul> | <ul> <li>KINLINFDIKHAKF IGGLILPFAYSWAF RVSALKFFAT</li> <li>KINLINFDIKHAKF IGGLILPFAYSWAF RVSALKFFAT</li> <li>KINLINFDIKHAKF IGGLILPFAYSWAF RVSALKFFAT</li> <li>KINLINFDIKHAKF IGGLILPFAYSWAF RVSALKFFAT</li> <li>KINLINFDIKTSCHSTENKYAFT</li> <li>KINLINFTRATAK</li> <li>KINLINFTRATAKT</li> <li>KINLINFTRATAKTANAFT</li> <li>KINLINFTRATAKTANAFT</li> <li>KINLINFTRATAKTANAFT</li> <li>KINLINFTRATAKTANAFT</li> <li>KINNAFT</li> <li>KINNAFTANAFT</li> <li>KINNAFTANAFTANAFTANAFTANAFTANAFTANAFTANAF</li></ul> | <ul> <li>CPING</li></ul>                                                                                                   | Nrv phylo     HSTLGVFLDFKINPSAVYRPSLDLLKHKKE     521       Advoce     FSLLGVMPV-ST*XVQNBTATR     541       Advoce     FSLLGVMPV-ST*XVQNBTATR     541       Advoce     FSLLGVMPV-ST*XVQNBTLATR     541       Advoce     FSLLGVMPV-ST*XVQNBTLATR     541       Advoce     FSLLGVMPV-ST*XVQNBTLATR     541       Advoce     FSLLGVMPV-ST*XVQNBTLATR     543       Advoce     FSLLGVMPV-ST*XVQNBTLARR     567       Advoce     FSVLLGLUPV-ST*XVQNBTLARR     544       STVLLGLUPV-ST*RYQNDTLARRP     544       STVLLGLUPV-ST*RYQNDTLARRP     544       STVLLGLUPV-ST*RYQNDTLARRP     544       STVLLGLUPV-ST*RYQNDDTLARRP     545       STVLLGLUPV-ST*RYQNDDTLARRP     547       STVLLGLUPV-ST*RYQNDDTLARRP     547       STVLLGLUPV-ST*RYQNDDTLQTRANSK     547 |
| Helicobach<br>Vibro c<br>Mainetabacter bo<br>Paraudononos ane<br>Paraudononos ane<br>Parendosta<br>Entrovolus<br>Schmonello<br>Schmonello                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Helicobacti<br>Vibro (<br>Acinetobacter ba<br>Piseudononos an<br>Misserionanos<br>Enterobacter<br>Klebaialto pres<br>Scherici<br>Scherici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Melicolaech<br>Vibro c<br>Acioneto ban<br>Pareudomonos an<br>Enterobacter<br>Klebaiello pres<br>Scherick<br>Scherick       | Melicolatori<br>Vibro é<br>Acinetolatoris da<br>Placudononos an<br>Placononos an<br>Aristroanos<br>Antonello -<br>Eschenik<br>Shiparilo<br>Shiparilo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| LIQAL YEE A SOCEPPAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| - machine mach | SV ET KYYQAADDTLQTCRRVSE<br>SV ET KYYQAADDTLQTCRRVSK<br>: |
| STULGLIG<br>PTLLKLFI<br>PTLLKLFI<br>PSTLGWR<br>PSTLGWR<br>PSTLGWR<br>PSTLGWR<br>PSTLGWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STLLGLTG                                                  |



**Supplementary Figure 4.** MALDI-TOF spectra of lipid A extracted from PAO1 or PA14 cells expressing EptA variants mutated in a catalytic residue (EptA<sup>T278A</sup>) or deleted of 22 amino acids at the C-terminus (EptA<sup> $\Delta C$ -ter</sup>) cultured in the presence of 0.5 mM IPTG. The m/z values of peaks corresponding to phosphoethanolaminated lipid A forms are highlighted in yellow. Spectra are representative of three biological replicates giving similar results.

## **1.2.** Supplementary Table

| Strain or plasmid        | Genotype and/or relevant characteristics                                                                                                          | Reference or source              |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| P. aeruginosa            |                                                                                                                                                   |                                  |
| PAO1 (ATCC15692)         | Reference isolate                                                                                                                                 | American type culture collection |
| PA14                     | Reference isolate                                                                                                                                 | Rahme et al., 1995               |
| PAO1 PrpsA::arn          | PAO1 derivative in which the promoter of the <i>arn</i> operon is replaced by the promoter of the housekeeping gene <i>rpsA</i>                   | Lo Sciuto et al., 2020           |
| PA14 PrpsA::arn          | PA14 derivative in which the promoter of the <i>arn</i> operon is replaced by the promoter of the housekeeping gene <i>rpsA</i>                   | Lo Sciuto et al., 2020           |
| E. coli                  |                                                                                                                                                   |                                  |
| DH5aF'                   | recA1 endA1 hsdR17 supE44 thi-1 gyrA96 relA1 ∆(lacZYA-<br>argF)U169[φ80 dlacZ∆M15], Nal <sup>R</sup>                                              | Liss, 1987                       |
| Plasmid                  |                                                                                                                                                   |                                  |
| pHNSHP45                 | <i>mcr-1</i> carrying plasmid                                                                                                                     | Liu et al., 2016                 |
| pBluescript II KS (pBS)  | Sequencing vector; ColE1 replicon; Ap <sup>R</sup>                                                                                                | Stratagene                       |
| pBS <i>eptA</i>          | pBS containing the coding sequence of the <i>eptA</i> gene from <i>P. aeruginosa</i> PAO1 (PA1972)                                                | This study                       |
| pBSmcr-1                 | pBS containing the coding sequence of the <i>mcr-1</i> gene from plasmid pHNSHP45                                                                 | This study                       |
| pBSeptA <sup>T278A</sup> | pBS containing the <i>eptA</i> coding sequence with a point mutation in the codon 278 leading to a T278A substitution                             | This study                       |
| $pBSeptA^{\Delta C-ter}$ | pBS containing a truncated <i>eptA</i> allele encoding for an EptA variant lacking the last 22 amino acids                                        | This study                       |
| pME6032                  | IPTG-inducible expression vector, <i>lacI<sup>Q</sup></i> , Tc <sup>R</sup> .                                                                     | Heeb and Haas, 2001              |
| pME <i>eptA</i>          | pME6032 containing the <i>eptA</i> (PA1972) coding sequence from pBS <i>eptA</i> cloned downstream of the IPTG-inducible promoter                 | This study                       |
| pMEmcr-1                 | pME6032 containing the <i>mcr-1</i> coding sequence from pBS <i>mcr-1</i> cloned downstream of the IPTG-inducible promoter                        | This study                       |
| pMEeptA <sup>T278A</sup> | pME6032 containing the $eptA^{T278A}$ allele from pBS $eptA^{T278A}$ cloned downstream of the IPTG-inducible promoter                             | This study                       |
| $pMEeptA^{\Delta C-ter}$ | pME6032 containing the $eptA^{\Delta C\text{-ter}}$ allele from pBS $eptA^{\Delta C\text{-ter}}$ cloned downstream of the IPTG-inducible promoter | This study                       |

**Supplementary Table 1.** Bacterial strains and plasmids used in this study.

| Primer name             | Sequence (5'-3') <sup>1</sup>           | Restriction sites <sup>2</sup> | Application                            |  |
|-------------------------|-----------------------------------------|--------------------------------|----------------------------------------|--|
| mcr-1_pME6032_FW        | cggaattcATGATGCAGCATACTTCTGTG           | EcoRI                          | Convertion of pDSmar 1                 |  |
| mcr-1_pME6032_RV        | ccc <u>ctcgag</u> TCAGCGGATGAATGCGGTG   | XhoI                           | Generation of pbSmcr-1                 |  |
| eptA_pME6032_FW         | cggaattCATGTCGAAAGCCCGCGC               | EcoRI                          | Generation of pBS <i>eptA</i>          |  |
| eptA_pME6032_RV         | ccc <u>ctcgaG</u> TATCAGGAAGCCGGCGG     | XhoI                           |                                        |  |
| eptA_T278A_FW           | CGGTACCGAGgCCGCGGTGTC                   |                                | Convertion of a DS and T278A           |  |
| eptA_T278A_RV           | CAGGAGTGCACGTTGGAGAAGTTGATC             |                                | Generation of pbSeptA                  |  |
| $eptA_\Delta 22aa_RV^3$ | ccc <u>ctcgag</u> tcaCGCCTGCAGGACCTCGGG | XhoI                           | Generation of $pBSeptA^{\Delta C-ter}$ |  |
| $eptA_RT_FW^4$          | TGCCCTGCATGTTCTCCAAC                    |                                |                                        |  |
| $eptA_RT_RV^4$          | GATCCTTGCTCTCGCTCAGG                    |                                | qRT-PCR                                |  |
| rpoD_RT_FW              | GGGCGAAGAAGGAAATGGTC                    |                                |                                        |  |
| rpoD_RT_RV              | CAGGTGGCGTAGGTGGAGAA                    |                                |                                        |  |
| M13_FW                  | GTTTTCCCAGTCACGAC                       |                                | DNA sequencing from pBS                |  |
| M13_RV                  | AACAGCTATGACCATG                        |                                |                                        |  |

### Supplementary Table 2. Primers used in this study.

<sup>1</sup> Lowercase letters indicate the region of the primer that does not anneal to the template.

<sup>2</sup> The restriction site used for cloning is underlined in the primer sequence.

<sup>3</sup> This primer was paired with *eptA\_pME6032\_FW* to amplify the truncated *eptA*<sup> $\Delta$ C-ter</sup> variant.

<sup>4</sup> Primers described and used in Nowicki et al., 2015.

Additional references (not included in the main text)

Liss, L. (1987). New M13 host: DH5 F' competent cells. Focus 9, 13.

Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., Ausubel, F.M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. *Science* 268, 1899-1902.