#	Articles	Trade-offSynergy
1	Nagarajan et al. 2022. Status of important coastal habitats of North Tamil Nadu: Diversity,	
	current threats and approaches for conservation. Regional Studies in Marine Science 49, 102106	
2	Sudo et al. 2022. Predicting Future Shifts in the Distribution of Tropicalization Indicator Fish that Affect Coastal Ecosystem Services of Japan.	•
	Frontiers in Built Environment 7, 788700	
3	Fauzi et al. 2021. Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach. Int.	
	Journal of Geo-Information 10, 778	
4	Jesse et al. 2021. Effects of Infectious Diseases on Population Dynamics of Marine	
	Organisms in Chesapeake Bay. Estuaries and Coasts 44, 2334-2349	
5	Kang et al. 2021. Climate change impacts on China's marine ecosystems. Rev. Fish. Biol. Fisheries 31, 599-629	•
6	Syukur et al. 2021. The evidence of seagrass environmental support for local people's economic on the South Coast of Lombok Island. Earth and	
	Environmental Science 913, 012051	
7	Arney et al. 2021. Soil Carbon and Nitrogen Storage in Natural and Prop-Scarred Thalassia Testudinum Seagrass Meadows. Estuaries and	•
	Coasts 44, 178–188	
8	Leiva-Dueñas et al. 2021. Long-term dynamics of production in western Mediterranean seagrass meadows: Trade-offs and legacies of past	•
	disturbances. Science of The Total Environment 754, 142117	
9	Alati et al. 2020. Mollusc shell fisheries in coastal Kenya: Local ecological knowledge reveals overfishing. Ocean & Coastal Management 195,	•
	105285	
10	Fales et al. 2020. Reciprocal Interactions between Bivalve Molluscs and Seagrass: A Review and Meta-Analysis. Journal of Shellfish Research 39,	
	547-562	
11	Fulton et al. 2020. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish & Fisheries 21, 700-717	•
12	Gagnon et al. 2020. Facilitating foundation species: The potential for plant-bivalve interactions to improve habitat restoration success. Journal	• •
	of Applied Ecology 57, 1161-1179	
13	Hastings et al. 2020. Assessing the Impact of Physical and Anthropogenic Environmental Factors in Determining the Habitat Suitability of	•
	Seagrass Ecosystems. Sustainability 12, 8302	
14	Legare et al. 2020. Relationships between Species Communities as Determined by Analysis of Data from Multiple Surveys of Pleasant Bay, Cape	
	Cod, MA. Northeastern Naturalist 27, 114-131	
15	Legare et al. 2020. The impacts of hydraulic clamming in shallow water and the importance of incorporating anthropogenic disturbances into	•
	habitat assessments. Aquatic Living Resources 33, 13	

16	Muething et al. 2020. On the edge: assessing fish habitat use across the boundary between Pacific oyster aquaculture and eelgrass in Willapa	
	Bay, Washington, USA. Aquaculture Environment Interactions 12, 541-557	
17	Perera-Valderrama et al. 2020. Increasing marine ecosystems conservation linking marine protected areas and integrated coastal management	
	in southern Cuba. Ocean & Coastal Management 196, 105300	
18	Quevedo et al. 2020. Perceptions of the seagrass ecosystems for the local communities of Eastern Samar, Philippines: Preliminary results and	•
	prospects of blue carbon services. Ocean & Coastal Management 191, 105181	
19	Román et al. 2020. Decadal changes in the spatial coverage of Zostera noltei in two seagrass meadows (Ría de Vigo; NW Spain). Regional Studies	
	in Marine Science 36, 101264	
20	Rumahorbo et al. 2020. An assessment of the coastal ecosystem services of Jayapura City, Papua Province, Indonesia. Environmental & Socio-	
	economic Studies 8, 45-53	
21	Chalifour et al. 2019. Habitat use by juvenile salmon, other migratory fish, and resident fish species underscores the importance of estuarine	
	habitat mosaics. Marine Ecology Progress Series 625, 145-162	
22	De los Santos et al. 2019. Recent trend reversal for declining European seagrass meadows. Nature Communications 10, 3356	
23	Dumbauld et al. 2019. Spatial planning for shellfish aquaculture and seagrasses in US West Coast estuaries: considerations for adapting to an	
	uncertain climate. Bull Jap Fish Res Edu Agen 49, 97–109	
24	Exton et al. 2019. Artisanal fish fences pose broad and unexpected threats to the tropical coastal seascape. Nature Communications 10, 2100	
25	Ferriss et al. 2019. Bivalve aquaculture and eelgrass: A global meta-analysis. Aquaculture 498, 254-262	
26	Furlan et al. 2019. Cumulative Impact Index for the Adriatic Sea: Accounting for interactions among climate and anthropogenic pressures.	
	Science of The Total Environment 670, 379-397	
27	García-Redondo et al. 2019. Zostera marina meadows in the northwestern Spain: distribution, characteristics and anthropogenic pressures.	
	Biodiversity and Conservation 28, 1743–1757	
28	Lillebø et al. 2019. Ecosystem-based management planning across aquatic realms at the Ria de Aveiro Natura 2000 territory. Science of The Total	
	Environment 650, 1898-1912	
29	Montefalcone et al. 2019. Geospatial modelling and map analysis allowed measuring regression of the upper limit of Posidonia oceanica	
	seagrass meadows under human pressure. Estuarine, Coastal and Shelf Science 217, 148-157	
30	Murphy et al. 2019. A human impact metric for coastal ecosystems with application to seagrass beds in Atlantic Canada. FACETS 4, 210–237	
2.4		
31	Patterson Edward et al. 2019. Seagrass restoration in Gulf of Mannar, Tamil Nadu, Southeast India: a viable management tool. Environmental	
	Monitoring and Assessment 191, 430	

47	Lamb et al. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731-733	
70	Algae 62, 136-147	
46	Inaba et al. 2017. Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA. Harmful	
73	81, 121-8	
45	Garmendia et al. 2017. Effect of trampling and digging from shellfishing on Zostera noltei (Zosteraceae) intertidal seagrass beds. Scientia Marina	
44	clam harvesting. Marine Biology Research 13, 955-966	
11	Barañano et al. 2017. Resilience of Zostera marina habitats and response of the macroinvertebrate community to physical disturbance caused by	
43	Unsworth et al. 2018. Indonesia's globally significant seagrass meadows are under widespread threat. Science of The Total Environment 634, 279-286	
12	approaches based on ecosystem services and vulnerability analyses. Botanica Marina 61, 3	
42	Tan et al. 2018. A proposed decision support tool for prioritising conservation planning of Southeast Asian seagrass meadows: combined	
42	1980 with Assessment of the Causes. Marine Fisheries Review 80, 1	
41	Mackenzie & Tarnowski. 2018. Large Shifts in Commercial Landings of Estuarine and Bay Bivalve Mollusks in Northeastern United States after	
40	Kletou et al. 2018. Seagrass recovery after fish farm relocation in the eastern Mediterranean. Marine Environmental Research 140, 221-233	•
39	Groner et al. 2018. Oysters and eelgrass: potential partners in a high pCO2 ocean. Ecology 99, 1802-1814	
	165-195	
38	Cerchiello G. 2018. The sustainability of recreational boating. The case study of anchoring boats in Jávea (Alicante). Investigaciones Turísticas 16,	
	laevigatus. Marine Ecology Progress Series 598, 201-212	
37	Barrow et al. 2018. Environmental drivers of growth and predicted effects of climate change on a commercially important fish, Platycephalus	•
36	Barañano et al. 2018. Clam harvesting decreases the sedimentary carbon stock of a Zostera marina meadow. Aquatic Botany 146, 48-57	•
	ecosystem services provider. Science of The Total Environment 688, 1081-1091	
25	Ruiz-Frau et al. 2019. In the blind-spot of governance – Stakeholder perceptions on seagrasses to guide the management of an important	
34	Román et al. 2019. Anthropogenic Impact on Zostera noltei Seagrass Meadows (NW Iberian Peninsula) Assessed by Carbon and Nitrogen Stable Isotopic Signatures. Estuaries and Coasts 42, 987–1000	
2.	of Zostera noltei seagrass meadows. Marine Environmental Research 143, 30-38	
33	Román et al. 2019. Anthropogenic nutrient inputs in the NW Iberian Peninsula estuaries determined by nitrogen and carbon isotopic signatures	
	Channel. Ecological Indicators 106, 105480	
32	Pezy et al. 2019. Anthropogenic impact of oyster farming on macrofauna biodiversity in an eelgrass (Zostera marina) ecosystem of the English	

48	Mach et al. 2017. Nonnative Species in British Columbia Eelgrass Beds Spread via Shellfish Aquaculture and Stay for the Mild Climate. Estuaries	
	and Coasts 40, 187–199	_
49	Mazarrasa et al. 2017. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of	
	Posidonia oceanica meadows. Limnology and Oceanography 62, 1436-1450	
50	Nordlund et al. 2017. Global significance of seagrass fishery activity. Fish and Fisheries 19, 399-412	
51	Oreska et al. 2017. The bay scallop (Argopecten irradians) industry collapse in Virginia and its implications for the successful management of	
	scallop-seagrass habitats. Marine Policy 75, 116-124	
52	Orth et al. 2017. Boat Propeller Scarring of Seagrass Beds in Lower Chesapeake Bay, USA: Patterns, Causes, Recovery, and Management.	
	Estuaries and Coasts 40, 1666–1676	
53	Taylor et al. 2017. Recruitment and connectivity influence the role of seagrass as a penaeid nursery habitat in a wave dominated estuary.	
	Science of The Total Environment 584–585, 622-630	
54	Bas Ventín et al. 2015. Towards adaptive management of the natural capital: Disentangling trade-offs among marine activities and seagrass	
	meadows. Marine Pollution Bulletin 101, 29-38	
55	Dumbauld & McCoy. 2015. Effect of oyster aquaculture on seagrass Zostera marina at the estuarine landscape scale in Willapa Bay, Washington	
	(USA). Aquaculture Environment Interactions 7, 29–47	
56	Dumbauld et al. 2015. Association of juvenile salmon and estuarine fish with intertidal seagrass and oyster aquaculture habitats in a Northeast	
	Pacific Estuary. Transactions of the American Fisheries Society 144, 1091–1110	
57	Rabassó & Hernández. 2015. Bioeconomic analysis of the environmental impact of a marine fish farm. Journal of Environmental Management	
	158, 24-35	
58	Reum et al. 2015. Evaluating community impacts of ocean acidification using qualitative network models. Marine Ecology Progress Series 536,	
	11-24	
59	Vázquez-Luis et al. 2015. Influence of boat anchoring on Pinna nobilis: A field experiment using mimic units. Marine and Freshwater Research 66,	
	786-794	
60	Wallner-Hahn et al. 2015. Cascade effects and sea-urchin overgrazing: An analysis of drivers behind the exploitation of sea urchin predators for	
	management improvement. Ocean & Coastal Management 107, 16-27.	
61	Bertelli & Unsworth. 2014. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Marine	
	Pollution Bulletin 83, 425-429	
62	Blandon & Ermgassen. 2014. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine, Coastal	
	and Shelf Science 141, 1-8	
63	Fröcklin et al. 2014. Towards improved management of tropical invertebrate fisheries: including time series and gender. PLoS One 9, e91161.	

64	Tuya et al. 2014. Economic assessment of ecosystem services: Monetary value of seagrass meadows for coastal fisheries. Ocean & Coastal	
	Management 96, 181-187	
65	Unsworth et al. 2014. Food supply depends on seagrass meadows in the coral triangle. Environmental Research Letters 9, 094005	•
66	Verdelhos et al. 2014. Recovery trends of Scrobicularia plana populations after restoration measures, affected by extreme climate events.	
	Marine Environmental Research 98, 39-48	
67	Diedrich et al. 2013. Modeling the influence of attitudes and beliefs on recreational boaters' use of buoys in the Balearic Islands. Ocean & Coastal Management 78, 112-120	
-	· ·	
80	Sobocinski et al. 2013. Historical Comparison of Fish Community Structure in Lower Chesapeake Bay Seagrass Habitats. Estuaries and Coasts 36, 775–794	•
69	Lozano-Montes et al. 2012. Exploring the effects of spatial closures in a temperate marine ecosystem in Western Australia: A case study of the	
	western rock lobster (Panulirus cygnus) fishery. Ecological Modelling 245, 31-40	
70	Pitanga et al. 2012. Quantification and classification of the main environmental impacts on a Halodule wrightii seagrass meadow on a tropical	
	island in northeastern Brazil. Anais da Academia Brasileira de Ciências 84, 1	
71	Nordlund et al. 2010. Changes in an East African social-ecological seagrass system: invertebrate harvesting affecting species composition and	
	local livelihood. Aquatic Living Resources 23, 399–416	
72	Ruiz et al. 2010. Remote influence of off-shore fish farm waste on Mediterranean seagrass (Posidonia oceanica) meadows. Marine	
	Environmental Research 69, 118-126	
73	Rueda et al. 2009. Changes in the composition and structure of a molluscan assemblage due to eelgrass loss in southern Spain (Alboran Sea).	
	Journal of the Marine Biological Association of the United Kingdom 89, 1319 - 1330	
74	Stelzenmüller et al. 2009. Patterns of species and functional diversity around a coastal marine reserve: a fisheries perspective. Aquatic	
	Conservation 19, 554-565	_
75	Cardoso et al. 2008. The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities' dynamics.	
	Estuarine, Coastal and Shelf Science 76, 553-565	
76	Díaz-Almela et al. 2008. Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Marine Pollution Bulletin 56, 1332-	
	1342	_
77	González et al. 2008. Community structure of caprellids (Crustacea: Amphipoda: Caprellidae) on seagrasses from southern Spain. Helgoland	
	Marine Research volume 62, 189–199	
78	Lloret et al. 2008. Impacts of recreational boating on the marine environment of Cap de Creus (Mediterranean Sea). Ocean & Coastal	
	Management 51, 749-754	
79	Pérez et al. 2008. Physiological responses of the seagrass Posidonia oceanica as indicators of fish farm impact. Marine Pollution Bulletin 56, 869-	
	879	

	Bulletin 42, 749-760	
94	Ruiz et al. 2001. Effects of Fish Farm Loadings on Seagrass (Posidonia oceanica) Distribution, Growth and Photosynthesis. Marine Pollution	•
93	Marbà et al. 2002. Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environmental Conservation 29, 509-518	
	Gullström et al. 2002. Seagrass ecosystems in the western Indian Ocean. Ambio, 588-596	
	Crawford et al. 2003. Effects of shellfish farming on the benthic environment. Aquaculture 224, 117-140	•
	de la Torre-Castro & Rönnbäck. 2004. Links between humans and seagrasses—an example from tropical East Africa. Ocean & Coastal Management 47, 361-387	• •
	Cochón & Sánchez. 2005. Variations of Seagrass Beds in Pontevedra (North-Western Spain): 1947-2001. Thalassas 21, 9-19	•
	Cabaço et al. 2005. Population-level effects of clam harvesting on the seagrass Zostera noltii. Marine Ecology Progress Series 298, 123-129	•
	Alexandre et al. 2005. Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Marine Ecology Progress Series 298, 115-122	•
	Canary Islands, eastern Atlantic). Ciencias Marinas 32, 695-704	
86	Tuya et al. 2006. Seasonal cycle of a Cymodocea nodosa seagrass meadow and of the associated ichthyofauna at Playa Dorada (Lanzarote,	
85	Eklöf et al. 2006. How do seaweed farms influence local fishery catches in a seagrass-dominated setting in Chwaka Bay, Zanzibar?. Aquatic Living Resources 19, 137-147.	•
84	Wisehart et al. 2007. Importance of eelgrass early life history stages in response to oyster aquaculture disturbance. Marine Ecology Progress Series 344, 71-80	
	Verdiell-Cubedo et al. 2007. Fish assemblages associated with Cymodocea nodosa and Caulerpa prolifera meadows in the shallow areas of the Mar Menor coastal lagoon. Limnética 26, 341-350	
02	Marine Science 64, 309–317 Verdiall Cubada et al. 2007. Fish assemblages associated with Cumadassa and Caularna prolifera meadaws in the shallow areas of the	
82	McLaughlin et al. 2007. Can traditional harvesting methods for cockles be accommodated in a Special Area of Conservation?. ICES Journal of	
	western Mediterranean). Scientia Marina 71, 811-820	
81	Cardona et al. 2007. Effects of recreational fishing on three fish species from the Posidonia oceanica meadows off Minorca (Balearic archipelago,	
80	Apostolaki et al. 2007. Fish farming impact on sediments and macrofauna associated with seagrass meadows in the Mediterranean. Estuarine, Coastal and Shelf Science 75, 408-416	