

Supplementary Material

TISSUE DEGRADATION MODEL

The tissue degradation model used in this work has been developed by Daniel Balzani and coworkers (Balzani et al., 2012; Anttila et al., 2019). In a previous study, we have used this model to study the interaction between tissue degradation and blood flow (Wang et al., 2021). Here we give a brief outline of this method.

The total strain energy function of the tissue degradation model is chosen to be (Balzani et al., 2012)

$$\Psi^{\text{tot}} = \Psi^{\text{iso}} + \Psi^{\text{vol}} + \sum_{i=1}^{2} \Psi_{i}^{\text{ti}}.$$
(S1)

Here, $\Psi^{\text{iso}} = c_1(I_1/I_3^{1/3} - 3)$ describing the ground matrix material (also known as elastin) as incompressible Neo-Hookean; $\Psi^{\text{vol}} = \epsilon_1(I_3^{\epsilon_2} + 1/I_3^{\epsilon_2} - 2)$ (Hartmann and Neff, 2003) serving as volumetric penalty function to account for near-incompressibility. $I_1 = \text{tr}C$ and $I_3 = \text{det}C$ denote the first and the third invariants of the right Cauchy-Green tensor $C = F^T F$, while F is the deformation gradient tensor. The effective elasticity tensor is computed via $\mathbb{C} = 4\partial_{CC}^2 \Psi$ (Balzani et al., 2012).

The effect of damage is accounted for across two phenomenological fiber families i = 1, 2 as

$$\Psi_i^{\rm ti} = \alpha_1 \langle (1 - D_i) [\kappa I_1 + (1 - 1.5\kappa) K_3^i] - 2 \rangle^{\alpha_2}, \tag{S2}$$

describing the material behavior of collagen fibers. D_i are scalar damage functions for each fiber family i used to capture remnant strains (i.e., strain at zero stress level after unloading) within the fibers and the stress-softening effect. The Macaulay brackets, $\langle (\cdot) \rangle = [(\cdot) + |(\cdot)|]/2$, filter out positive values. $K_3^i = \text{tr}[\text{cof}C(1 - M_i)]$ is the fundamental polyconvex function (Schröder and Neff, 2003) with the definition of the structural tensor $M_i = A_i \otimes A_i$, given in terms of each fiber direction vector A_i . The cofactor is defined as $\text{cof}C = \text{det}CC^{-1}$. Here, c_1 , ϵ_1 , ϵ_2 , α_1 , α_2 and κ are material parameters.

The damage function D_i for a fiber family *i* is defined as

$$D_i(\beta_i) = D_{\mathrm{s},i} \left[1 - \exp\left(\frac{\ln(1 - r_{\mathrm{s}})}{\beta_{\mathrm{s}}}\beta_i\right) \right],\tag{S3}$$

where the maximally reachable damage value for fixated load levels is denoted by $D_{s,i} \in [0,1)$, the fraction of the maximum damage is $r_s = 0.99$, and $\beta_s > 0$ is the value of the internal variable β_i corresponding to damage saturation. The internal variable is defined as $\beta_i = \langle \tilde{\beta}_i - \tilde{\beta}_i^{\text{ini}} \rangle$, with $\tilde{\beta}_i = \int_0^t \langle \Psi_i^{\text{ti},0}(s) \rangle ds$ allowing for continuous damage evolution for loading and re-loading paths and $\tilde{\beta}_i^{\text{ini}}$ denoting the damage initiation threshold. *t* indicates the time at the current state, and $\Psi_i^{\text{ti},0}$ is the first time derivative of the fictitiously undamaged (effective) strain energy density $\Psi_i^{\text{ti},0}$ in fiber direction *i*. The maximally reachable damage value for fixated load levels $D_{s,i}$ is expressed as

$$D_{\mathrm{s},i}(\gamma) = D_{\infty} \left[1 - \exp\left(\frac{\ln(1 - r_{\infty})}{\gamma_{\infty}}\gamma_i\right) \right],\tag{S4}$$

with the predefined converging limit for the overall damage value $D_{\infty} \in [0, 1)$ and $\gamma_{\infty} > 0$ representing the value of the internal variable γ_i reached at the limit fraction $r_{\infty} = 0.99$.

In order to ensure that $D_{s,i}$ remains unchanged during a cyclic process under fixed maximum load levels, the second internal variable

$$\gamma_i = \max_{s \in [0,t]} \langle \Psi_i^{\text{ti},0}(s) - \Psi_{\text{ini},i}^{\text{ti},0} \rangle \tag{S5}$$

is defined as the maximum value of the effective energy reached up to the current state at t. $\Psi_{\text{ini},i}^{\text{ti},0}$ denotes the effective strain energy density at an initial damage state obtained at the limit of the physiological domain. The damage saturation criterion is expressed as

$$\phi_i := \langle \Psi_i^{\text{ti},0}(s) - \Psi_{\text{ini},i}^{\text{ti},0} \rangle - \gamma_i \le 0.$$
(S6)

In this model, different degradation intensities can be simulated by adapting the damage parameter γ_{∞} . A small degree of damage can be simulated by increasing the value of γ_{∞} (Wang et al., 2021). Compared with $\gamma_{\infty} = 11$ kPa, we use $\gamma_{\infty} = 18$ kPa to simulate a smaller degradation (which may represent the accumulation (overall effect) of damage for a shorter time).

REFERENCES

- Anttila, E., Balzani, D., Desyatova, A., Deegan, P., MacTaggart, J., and Kamenskiy, A. (2019). Mechanical damage characterization in human femoropopliteal arteries of different ages. *Acta Biomaterialia*. 90, 225–240
- Balzani, D., Brinkhues, S., and Holzapfel, G. (2012). Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. *Comput. Methods Appl. Mech. Engrg.* 213-216, 139–151
- Hartmann, S. and Neff, P. (2003). Existence theory for a modified polyconvex hyperelastic relation of generalized polynomial-type in the case of nearly-incompressibility. *Int J. Solids Struct* 40, 2767–2791
- Schröder, J. and Neff, P. (2003). Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. *Int J. Solids Struct* 40, 401–445
- Wang, H., Uhlmann, K., Vedula, V., Balzani, D., and Varnik, F. (2021). Fluid-structure interaction simulation of tissue degradation and its effects on intra-aneurysm hemodynamics. *bioRxiv* doi:https: //doi.org/10.1101/2021.09.01.458529