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TISSUE DEGRADATION MODEL
The tissue degradation model used in this work has been developed by Daniel Balzani and
coworkers (Balzani et al., 2012; Anttila et al., 2019). In a previous study, we have used this model
to study the interaction between tissue degradation and blood flow (Wang et al., 2021). Here we give a
brief outline of this method.

The total strain energy function of the tissue degradation model is chosen to be (Balzani et al., 2012)

Ψtot = Ψiso + Ψvol +
2∑
i=1

Ψti
i . (S1)

Here, Ψiso = c1(I1/I
1/3
3 − 3) describing the ground matrix material (also known as elastin) as

incompressible Neo-Hookean; Ψvol = ε1(I
ε2
3 +1/Iε23 −2) (Hartmann and Neff, 2003) serving as volumetric

penalty function to account for near-incompressibility. I1 = trC and I3 = detC denote the first and the
third invariants of the right Cauchy-Green tensor C = F TF , while F is the deformation gradient tensor.
The effective elasticity tensor is computed via C = 4∂2CCΨ (Balzani et al., 2012).

The effect of damage is accounted for across two phenomenological fiber families i = 1, 2 as

Ψti
i = α1〈(1−Di)[κI1 + (1− 1.5κ)Ki

3]− 2〉α2 , (S2)

describing the material behavior of collagen fibers. Di are scalar damage functions for each fiber family
i used to capture remnant strains (i.e., strain at zero stress level after unloading) within the fibers and
the stress-softening effect. The Macaulay brackets, 〈(·)〉 = [(·) + |(·)|] /2, filter out positive values.
Ki

3 = tr[cofC(1 −Mi)] is the fundamental polyconvex function (Schröder and Neff, 2003) with the
definition of the structural tensor Mi = Ai ⊗Ai, given in terms of each fiber direction vector Ai. The
cofactor is defined as cofC = detCC−1. Here, c1, ε1, ε2, α1, α2 and κ are material parameters.

The damage function Di for a fiber family i is defined as

Di(βi) = Ds, i

[
1− exp

(
ln(1− rs)

βs
βi

)]
, (S3)

where the maximally reachable damage value for fixated load levels is denoted by Ds, i ∈ [0, 1), the fraction
of the maximum damage is rs = 0.99, and βs > 0 is the value of the internal variable βi corresponding to
damage saturation. The internal variable is defined as βi = 〈β̃i − β̃inii 〉, with β̃i =

∫ t
0 〈Ψ̇

ti, 0
i (s)〉ds allowing

for continuous damage evolution for loading and re-loading paths and β̃inii denoting the damage initiation
threshold. t indicates the time at the current state, and Ψ̇ti, 0

i is the first time derivative of the fictitiously
undamaged (effective) strain energy density Ψti,0

i in fiber direction i. The maximally reachable damage
value for fixated load levels Ds, i is expressed as

Ds, i(γ) = D∞

[
1− exp

(
ln(1− r∞)

γ∞
γi

)]
, (S4)
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with the predefined converging limit for the overall damage value D∞ ∈ [0, 1) and γ∞ > 0 representing
the value of the internal variable γi reached at the limit fraction r∞ = 0.99.

In order to ensure that Ds, i remains unchanged during a cyclic process under fixed maximum load levels,
the second internal variable

γi = max
s∈[0,t]

〈Ψti, 0
i (s)−Ψti, 0

ini, i〉 (S5)

is defined as the maximum value of the effective energy reached up to the current state at t. Ψti, 0
ini, i denotes

the effective strain energy density at an initial damage state obtained at the limit of the physiological
domain. The damage saturation criterion is expressed as

φi := 〈Ψti, 0
i (s)−Ψti, 0

ini, i〉 − γi ≤ 0. (S6)

In this model, different degradation intensities can be simulated by adapting the damage parameter γ∞.
A small degree of damage can be simulated by increasing the value of γ∞ (Wang et al., 2021). Compared
with γ∞ = 11 kPa, we use γ∞ = 18 kPa to simulate a smaller degradation (which may represent the
accumulation (overall effect) of damage for a shorter time).
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