Supplementary Table 1: Summary of *O. rufipogon, O. nivara* and *O. sativa* habitat preferences, geographic range, and morphological traits. [Edited from Jung (2016) and Kim (2016)] | Trait | Oryza species | | | | |--|--|--|---|--| | | O. rufipogon | O. nivara | O. sativa | | | Life habit ¹ | Perennial | Annual | Annual | | | Habitat ² | Deepwater/aquatic,
swamps/marshes, rice
fields, moderately deep
water, prefers clay/loam
soil and black soil | Seasonally dry,
swamps,
pond/stream/field
banks | Dry and wetland fields, deep water up to 4m, floating >4m | | | Geographic range ² | Tropical Asia to
Australia ² | Drier regions of S/SE Asia | Worldwide | | | Photoperiod response | Sensitive | Usually insensitive | Sensitive | | | Plant type ² | Decumbent or floating,
tufted and
spreading/scrambling | Semi-erect to decumbent | | | | Lateral meristem
formation/nodal
tillering | Present | | Absent | | | Horizontal stems | Present | Absent | Absent | | | Regeneration ability of stem segments ^{6,7} | Mod-high; mod-high (1.51-2.50 ave. in 0-3 scale) | Mostly low; low (0.07-0.33 ave. in 0-3 scale) | Low-moderatelyhigh | | | Plant height | Tall, ~150cm ave. ⁵ ;
culm length: 234-
293cm ⁷ | Short to intermediate(usu. <2m) ² ; short (ave. 84 cm) ⁵ ; Culm length: 127-151.7cm ⁷ | | | | Internodes | Long | | | | | Ligule | 2.07 cm ave. length ⁵ | 1.19 cm ave.
length ⁵ | 1.71 cm ave. length ⁵ | | | Characteristics at end of growing season | Dried productive tillers,
green tillers present that
will flower next season | All tillers are productive, all dried | | | | Stolons | Sometimes | None | None | | | Roots | Perennial root stock, adventitious roots | | | | | Trait | Oryza species | | | | |---|---|--|---|--| | | O. rufipogon | O. nivara | O. sativa | | | Days to heading ⁷ | Longer (137-146 d
ave.) | Shorter (112-145 d ave.) | | | | Panicle number ⁷ | Lower (3.3-8.5 ave.) | Higher (10.4-14.5 ave.) | | | | Panicle length ⁵ | Ave. 21.3cm | Ave. 13.3cm | Ave. 21.8cm | | | Panicle exsertion | Well exserted | Inserted or not well exserted/ partially exserted | | | | Panicle shape | Spreading, open | Semi-open | Erect, compact | | | Panicle branching ⁵ | Ave. 7.2 primary branches/panicle | Few secondary and tertiary branches; ave.5.06 primary branches/panicle | Secondary branching;
ave. 10.2 primary
branches/panicle | | | Spikelet dimensions | Usually 8-9 mm L ² ;
ave. 8.13 mm L,
2.27mm W ⁵ | Large - 6-8.4mm L,
1.9-3.0 mm W, 1.2-
2.0 mm thick, ave. ² ;
8.14L, 2.56 W ave. ⁵ | Usually 4-8.5mm L,2-
4 mm W ² ; ave.
8.03mm L,3.05mm
W ⁵ | | | Spikelets/panicle | Ave. 63.45 | Ave. 39.35 | Ave. 113.95 | | | Spikelet fertility | May be low | High | | | | Time between spikelet opening and pollenemission ⁶ | Longer: ~2-6 min | Short: ~1-2 min | Short: immediately-30 sec | | | Awns | Long - 5-11cm ² ;
ave. 5.87 ⁵ | Long/strong (4-
10cm) ² ; 6.91 cm
ave. ⁵ | Short-none ² ; ave. 0.72cm ⁵ | | | Anthers | >3mm L to >7;
indehiscent,pendant;
4.88 mm ave. L ⁵ ; 4.79-
5.07 cm ave. ⁷ | <2.5mm; immd. dehiscent, upright; 2.82 mm ave. L ⁵ ; 2.10-2.21 cm ave. ⁷ | Usually <2.1 mm L ² ;
2.51 mm ave. ⁵ | | | Embryo size | Usually 1-1.5 mm long | Usually 1-1.5 mm long | Usually <2.1 mm
long | | | Synchronicity of seed maturation | Asynchronous | Asynchronous | Synchronous | | | Shattering ² | Highly shattering | Highly shattering | Non-shattering | | | Seed production | Low | High | High | | | Seed dormancy | Mod-mod high ⁶ | Mod-high ⁶ , strong ² | Low ⁶ | | - ¹ Vaughan DA, Morishima H, Kadowaki K (2003). Diversity in the *Oryza* genus. Current Opinion in Plant Biology 6 139–146. - ² Vaughan DA (1994) The Wild Relatives of Rice: A Genetic Resources Handbook, IRRI, Philippines - ³ Grillo MA, Li C, Fowlkes AM, Briggeman TM, Zhou A, Schemske DW, Sang T (2009) Genetic architecture for the adaptive origin of annual wild rice, *O. nivara*. Evolution 63:870-883. - (Individuals in studychosen based on characteristics displayed under greenhouse growing conditions.) - ⁴ Li C, Zhou A, Sang T (2005) Genetic analysis of rice domestication syndrome with the wild annual species, *O. nivara*. New Phytologist 170:185-193. - ⁵ Morishima H, Oka HI, Chang WT (1961) Directions of differentiation in populations of wild rice, *Oryza perennis* and *O. sativa f. spontanea*. Evolution 15: 326-339. - O. perennis traits entered here as O. rufipogon and O. sativa f. spontanea as O. nivara - ⁶ Oka HI, Morishima H (1967) Variations in the breeding system of a wild rice *O. perennis*. Evolution 21:249-258. - O. perennis (Asian race); perennis type entered as O. rufipogon and O. perennis Asian race, spontanea type entered as O. nivara - ⁷ Barbier P (1989a) Genetic variation and ecotypic differentiation in the wild rice species *Oryza rufipogon*. I. Population differentiation in life-history traits and isozymic loci. Japanese Journal Genetics 64:259-271.