Appendix S1

<u>SECTION A</u>: Studies used for comparing biodiversity between farmland with hedgerows and farmland without hedgerows.

Identifier	Reference
WoS1.1	Aavik & Liira. 2009. Agrotolerant and high nature-value species-plant biodiversity indicator groups in agroecosystems. <i>Ecological Indicators</i> 9: 892-901
WoS1.15	Andresen et al. 2012. The wild flora biodiversity in pesticide free buffer zones along old hedgerows. <i>Journal of Environmental Biology</i> 33 (3): 565-572
WoS1.37	Balfour et al. 2015. Following the dance: Ground survey of flowers and flower-visiting insects in a summer foraging hotspot identified via honeybee waggle dance decoding. <i>Agriculture Ecosystems & Environment</i> 213: 265-271
WoS1.85	Boutin et al. 2008. Plant diversity in crop fields and woody hedgerows of organic and conventional farms in contrasting landscapes. <i>Agriculture Ecosystems & Environment</i> 123(1-3):185-193
WoS1.89	Boutin et al. 2009. Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species, and landscape context. <i>Ecoscience</i> 16 (4): 492-501
WoS1.90	Boutin. 2006. Comparison of the vegetation and seedbanks of soybean fields, adjacent boundaries, and hedgerows in Ontario. <i>Canadian Journal of Plant Science</i> 86 (2): 557-567
WoS2.11	Burgio et al 2015 The Influence of Vegetation and Landscape Structural Connectivity on Butterflies (Lepidoptera: Papilionoidea and Hesperiidae), Carabids (Coleoptera: Carabidae), Syrphids (Diptera: Syrphidae), and Sawflies (Hymenoptera: Symphyta) in Northern Italy Farmland Environmental Entomology 1: 1-9
WoS2.26	Castro-Caro et al. 2015 Effects of hedges and herbaceous cover on passerine communities in Mediterranean olive groves <i>Acta Ornithologica</i> 50(2): 180-192
WoS2.53	Dainese et al. (2017) High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields <i>Journal of Applied Ecology</i> 54:380–388
WoS2.75	Debras et al. (2006) Discrimination between agricultural management and the hedge effect in pear orchards (south-eastern France) <i>Annals of Applied Biology</i> 149(3):347-355
WoS3.8	Dubois et al. (2009) Factors affecting the occurrence of the endangered saproxylic beetle Osmoderma eremita (Scopoli, 1763) (Coleoptera: Cetoniidae) in an agricultural landscape Landscape and Urban Planning 91:152–159
WoS3.11	Duflot et al. (2015) Reconsidering the role of 'semi-natural habitat' in agricultural landscape biodiversity: a case study <i>Ecological Research</i> 30: 75–83
WoS3.25	Evans et al. (2011) Seeds in farmland food-webs: Resource importance, distribution, and the impacts of farm management <i>Biological Conservation</i> 144:2941–2950
WoS3.53	Freemark et al. (2002) Importance of farmland habitats for conservation of plant species <i>Conservation Biology</i> 16(2):399-412
WoS3.83	Girard et al (2014) Higher nestling food biomass in organic than conventional soybean fields in eastern Ontario, Canada <i>Agriculture, Ecosystems and Environment</i> 189:199–205
WoS3.84	Girma et al. (2000) Insect pests and beneficial arthropod populations under different hedgerow intercropping systems in semiarid Kenya <i>Agroforestry Systems</i> 50: 279–292
WoS3.87	González-Valdivia et al. (2014) Avifauna en sistemas silvopastoriles en el Corredor Biológico Mesoamericano, Tabasco, México International Journal of Tropical Biology 62 (3): 1031- 1052
WoS4.7	Guillot et al. (2016) Landscape influences the morphology of male common toads (<i>Bufo bufo</i>) Agriculture, Ecosystems and Environment 233:106–110

WoS4.17	Hauser (2008) Groundnut/cassava/maize intercrop yields over three cycles of planted tree fallow/crop rotations on ultisol in southern Cameroon <i>Biological Agriculture and Horticulture</i> 25:379-399
WoS4.41	Hordculture 25:579-599 Hotaling et al. (2002) Breeding season bird use of restored wetland in eastern Maryland Southeastern Naturalist 1(3):233-252
WoS4.59	Jarvis et al. 2015. Distribution of crop wild relatives of conservation priority in the UK landscape <i>Biological Conservation</i> 191:444-451
WoS4.71	Jones and Haggar (1997) Impact of Nitrogen and organic manures on yield, botanical composition, and herbage quality of two contrasting grassland field margins <i>Biological Agriculture and Horticulture</i> 14(2):107-123
WoS4.76	Kagawa and Maeto (2014) Ground beetle (Coleoptera: Carabidae) assemblages associated with asatoyama landscape in Japan: the effects of soil moisture, weed height, and distance from woodlands <i>Applied Entomology and Zoology</i> 49(3):429-436
WoS4.84	Klimek et al. (2014) Modelling the spatial distribution of species-rich farmland to identify priority areas for conservation actions <i>Biological Conservation</i> 174:65–74
WoS4.85	Koellner and Scholz (2008) Assessment of land use impacts on the natural environment part 2: generic characterization factors for local species diversity in central Europe <i>International</i> <i>Journal of Life Cycle Assessment</i> 13 (1): 32 – 48
WoS5.1	Laiolo (2003) Diversity and structure of the bird community overwintering in the Himalayan subalpine zone: is conservation compatible with tourism? <i>Biological Conservation</i> 115 (2): 251–262
WoS5.8	Le Viol et al (2008) Plant and spider communities benefit differently from the presence of planted hedgerows in highway verges. <i>Biological Conservation</i> 141(6): 1581-1590
WoS5.25	Love et al. 2009. Tree seedling establishment in living fences: a low-cost agroforestry management practice for the tropics. <i>Agroforestry Systems</i> 77(1): 1-8
WoS5.31	Luptacik et al (2012) Diversity and community structure of soil Oribatida (Acari) in an arable field with alluvial soils. <i>European Journal of Soil Biology</i> 50:97-105
WoS5.42	Mancinelli et al (2015) Impact of land ownership and altitude on biodiversity evaluated by indicators at the landscape level in Central Italy <i>Land Use Policy</i> 45: 43-51
WoS5.71	Merckx et al (2009) Optimizing the biodiversity gain from agri-environment schemes. <i>Agriculture Ecosystems & Environment</i> 130(3-4): 177-182
WoS5.96	Morandin and Kremen (2013) Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. <i>Ecological Applications</i> 23(4): 829-839
WoS5.98	Morellet et al. (2011) Landscape composition influences roe deer habitat selection at both home range and landscape scales. <i>Landscape Ecology</i> 26(7): 999-1010
WoS6.13	Nascimbene et al. (2012) Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes <i>Environmental Management</i> 49:1054–1060
WoS6.45	Orlowski (2008) Roadside hedgerows and trees as factors increasing road mortality of birds: Implications for management of roadside vegetation in rural landscapes <i>Landscape and</i> <i>Urban Planning</i> 86: 153–161
WoS6.60	Paoletti et al. (2010) Soil invertebrates as bio-indicators in a natural area converted from agricultural use: the case study of Vallevecchia-Lugugnana in north-eastern Italy <i>Journal of Sustainable Agriculture</i> 34:38–56
WoS6.62	Paoletti et al. (1999) Arthropods as bioindicators in agroecosystems of Jiang Han plain, Qianjiang city, Hubei China <i>Critical Reviews in Plant Sciences</i> , 18(3):457–465
WoS6.65	Parish et al. (1994) Modelling the relationship between bird population variables and hedgerow and other field margin attributes. I. species richness of winter, summer and breeding birds <i>Journal of Applied Ecology</i> 31(4):764-775
WoS6.91	Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69
WoS7.2	Ponisio et al. (2016) On-farm habitat restoration counters biotic homogenization in intensively managed agriculture <i>Global Change Biology</i> 22(2): 704-715
WoS7.5	Power and Stout (2011) Organic dairy farming: impacts on insect-flower interaction networks and pollination <i>Journal of Applied Ecology</i> 48: 561–569

WoS7.47	Sánchez-García et al. (2015) Supplementary winter food for gamebirds through feeders: which species actually benefit? <i>The Journal of Wildlife Management</i> 79(5): 832–845
WoS7.48	Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744
WoS7.54	Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207: 17–25
WoS7.73	Sehgal (2011) Growth and productivity of <i>Ocimum basilicum</i> influenced by the application of organic manures under <i>Leucaena leucocephala</i> hedgerows in western Himalayan mid hills <i>Range Management and Agroforestry</i> 32(2):83-86
WoS7.79	Sheridan et al. (2009) Botanical rejuvenation of field margins and benefits for invertebrate fauna on a drystock farm in county longford Biology and environment- <i>Proceedidngs of the Royal Irish Academy</i> 109B(September): 95-106
WoS7.93	Slade et al. (2013) Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation <i>Ecology</i> 94(7): 1519–1530
WoS7.94	Smith et al. (2008) The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems <i>Agriculture, Ecosystems and Environment</i> 127: 119–125
WoS7.95	Smukler et al. (2010) Biodiversity and multiple ecosystem functions in an organic farmscape <i>Agriculture, Ecosystems and Environment</i> 139: 80–97
WoS8.5	Stanley and Stout (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundanceanddiversity:afield-scale evaluation reveals taxon-specific responses Journal of Applied Ecology 50: 335– 344344
WoS8.19	Sullivan and Sullivan (2006) Plant and small mammal diversity in orchard versus non-crop habitats <i>Agriculture, Ecosystems and Environment</i> 116: 235–243
WoS8.25	TangYa et al. (2003) Incorporation of mulberry in contour hedgerows to increase overall benefits: a case study from Ningnan County, Sichuan Province <i>China Agricultural Systems</i> 76: 775–785
WoS8.27	Tattersall et al. (2002) Is habitat linearity important for small mammal communities on farmland? <i>Journal of Applied Ecology</i> 39(4): 643-652
WoS8.38	Thomas and Marshall (1999) Arthropod abundance and diversity in differently vegetated margins of arable fields <i>Agriculture, Ecosystems and Environment</i> 72: 131-144
WoS8.49	Tsiafouli et al. (2006) Soil nematode biodiversity in organic conventional agroecosystems of Northern Greece <i>Russian Journal of Nematology</i> 14(2): 159-169
WoS8.58	Vandevelde et al. (2014) Activity of European common bats along railway verges <i>Ecological Engineering</i> 64: 49–56
WoS8.65	Varchola and Dunn (2001) Influence of hedgerow and grassy field borders on ground beetle (Coleoptera: Carabidae) activity in fields of corn <i>Agriculture, Ecosystems and Environment</i> 83: 153–163
WoS8.69	Vaughan et al. (2007) Spatial ecology and conservation of two sloth species in a cacao landscape in limón, Costa Rica <i>Biodiversity Conservation</i> 16: 2293–2310
WoS8.73	Verboom and Huitema (1997) The importance of linear landscape elements for the pipistrelle <i>Pipistrellus</i> <i>pipistrellus</i> and the serotine bat <i>Eptesicus serotins Landscape Ecology</i> 12(2): 117-125
WoS8.98	Wilkerson (2014) Using hedgerows as model linkages to examine non-native plant patterns <i>Agriculture, Ecosystems and Environment</i> 192: 38–46
WoS9.4	Wu et al. (2009) Responses of ground-dwelling spiders to four hedgerow species on sloped agricultural fields in Southwest China <i>Progress in Natural Science</i> 19: 337–346
WoS10.8	Assandri et al. (2018) Beautiful agricultural landscapes promote cultural ecosystem services and biodiversity conservation <i>Agriculture, Ecosystems and Environment</i> 256: 200–210
WoS10.66	Heath et al. (2017) A bustle in the hedgerow: Woody field margins boost on farm avian diversity and abundance in an intensive agricultural landscape <i>Biological Conservation</i> 212: 153–161

WoS10.71	Holden et al. (2019) The role of hedgerows in soil functioning within agricultural landscapes
	Agriculture, Ecosystems and Environment 273: 1–12
WoS10.78	Kebede et al. (2018) Implications of changes in land cover and landscape structure for the
	biocontrol potential of stemborers in Ethiopia Biological Control 122: 1-10
WoS10.88	Lefebvre et al. (2017) Bayesian inferences of arthropod movements between hedgerows and
	orchards Basic and Applied Ecology 21: 76–84
WoS10.96	Rangel-Acosta et al. (2017) Comparison of copro-necrophagous beetle assemblages
	(Scarabaeidae: Scarabaeinae) among tropical dry forest fragments and the adjacent matrix in
	the Atlántico Department of Colombia Revista Mexicana de Biodiversidad 88: 389-401
WoS10.104	McHugh et al. (2018) Use of field margins managed under an agri-environment scheme by
	foraging Barn Swallows Hirundo rustica Bird Study 65(3): 329-337
WoS10.105	Mestre et al. (2018) Both woody and herbaceous semi-natural habitats are essential for spider
	overwintering in European farmland Agriculture, Ecosystems and Environment 267: 141-
	146
WoS10.123	Ponisio et al. (2017) Opportunistic attachment assembles plant-pollinator networks Ecology
	Letters 20: 1261–1272
WoS10.137	Sellers et al. (2018) Impact of field-edge habitat on mammalian wildlife abundance,
	distribution, and vectored foodborne pathogens in adjacent crops Crop Protection 108: 1-
	11
WoS10.146	Staley et al. 2017. Experimental evidence for optimal hedgerow cutting regimes for Brown
	hairstreak butterflies. Insect Conservation and Diversity 11: 213 - 218

SECTION B: Studies used for comparing biodiversity between farmland with hedgerows and natural habitats.

Identifier	Reference
WoS1.40	Balsby et al. 2003. Degradation of whitethroat vocalisations: Implications for song flight and communication network activities. Behaviour 140: 695-719
WoS1.65	Berwaerts et al. 1998. Morphological and genetic variation in the speckled wood butterfly (<i>Pararge aegeria</i> L.) among differently fragmented landscapes. <i>Netherlands Journal of Zoology</i> 48 (3):241-253
WoS2.1	Buddle et al. 2004. Ground-dwelling spider assemblages inhabiting riparian forests and hedgerows in an agricultural landscape. <i>American Midland Naturalist</i> 151 (1):15-26
WoS2.20	Camerini and Groppali (2014) Landfill restoration and biodiversity: A case of study in Northern Italy <i>Waste Management and Research</i> 32(8): 782-790
WoS2.25	Castagneyrol et al (2014) Egg mortality in the pine processionary moth: habitat diversity, microclimate and predation effects <i>Agricultural and Forest Entomology</i> 16: 284–292
WoS2.27	Ceresa et al (2012) The importance of key marginal habitat features for birds in farmland: an assessment of habitat preferences of Red-backed Shrikes <i>Lanius collurio</i> in the Italian Alps, <i>Bird Study</i> 59(3):327-334
WoS2.45	Costa et al. (2017) Variegated tropical landscapes conserve diverse dung beetle communities <i>PeerJ</i> 5:e3125
WoS2.71	de la Peña and Bonte (2011) Soil biota effects on clonal growth and flowering in the forest herb <i>Stachys sylvatica Acta Oecologica</i> 37:110-116
WoS3.11	Duflot et al. (2015) Reconsidering the role of 'semi-natural habitat' in agricultural landscape biodiversity: a case study <i>Ecological Research</i> 30: 75–83
WoS3.20	Endels et al. (2004) Population structure and adult plant performance of forest herbs in three contrasting habitats <i>Ecography</i> 27(2):225-241
WoS3.25	Evans et al. (2011) Seeds in farmland food-webs: Resource importance, distribution and the impacts of farm management <i>Biological Conservation</i> 144:2941–2950
WoS3.53	Freemark et al. (2002) Importance of farmland habitats for conservation of plant species <i>Conservation Biology</i> 16(2): 399-412
WoS3.57	Fritz and Merriam (1996) Fencerow and forest edge architecture in eastern Ontario farmland <i>Agriculture, Ecosystems and Environment</i> 59 (1996): 159-170

WoS3.60	Fuentes-Montemayor et al. (2011) Pipistrelle bats and their prey do not benefit from four
	widely applied
WoS3.63	agri-environment management prescriptions <i>Biological Conservation</i> 144:2233–2246 Fuller et al. (2014) The response of ground-dwelling spiders (Araneae) and hoverflies
W055.05	(Diptera: Syrphidae) to afforestation assessed using within-site tracking Forestry 87: 301-
	312
WoS3.64	Fuller et al (2001) Distributions of birds in lowland agricultural landscapes of England and
	Wales: How distinctive are bird communities of
We CA 7	hedgerows and woodland? Agriculture, Ecosystems and Environment 84:79–92
WoS4.7	Guillot et al. (2016) Landscape influences the morphology of male common toads (<i>Bufo bufo</i>) Agriculture, Ecosystems and Environment 233:106–110
WoS4.52	Innes et al. (2010) Effect of grazing on ship rat density in forest fragments of lowland Waikato, New Zealand <i>New Zealand Journal of Ecology</i> 34(2): 227-232
WoS4.57	Jahnová et al. (2016) The role of various meadow margin types in shaping carabid and
	staphylinid beetle assemblages (Coleoptera: Carabidae, Staphylinidae) in meadow
	dominated landscapes Journal of Insect Conservation 20:59-69
WoS4.67	Jobin et al. (1997) Effects of agricultural practices on the flora of hedgerows and woodland
	edges in southern Quebec. Canadian Journal of Plant Sciences 77: 293-299
WoS4.76	Kagawa and Maeto (2014) Ground beetle (Coleoptera: Carabidae) assemblages associated
	with asatoyama landscape in Japan: the effects of soil moisture, weed
	height, and distance from woodlands Applied Entomology and Zoology 49(3):429-436
WoS4.84	Klimek et al. (2014) Modelling the spatial distribution of species-rich farmland to identify
	priority areas for conservation actions <i>Biological Conservation</i> 174:65–74
WoS4.93	Kubes and Fuchs (1998) Village as a bird refuge in cultural landscape (largely agricultural landscape, The Czech Republic) <i>Ekológia</i> (Bratislava) 17(2):208-220
WoS5.98	Morellet et al. (2011) Landscape composition influences roe deer habitat selection at both
	home range and landscape scales. Landscape Ecology 26(7): 999-1010
WoS6.7	Muñoz et al. (2013) Contribution of woody habitat islands to the conservation of birds and
	their potential ecosystem services in an extensive Colombian rangeland Agriculture,
	Ecosystems and Environment 173:13–19
WoS6.45	Orlowski (2008) Roadside hedgerows and trees as factors increasing road mortality of
	birds: implications for management of roadside vegetation in rural landscapes <i>Landscape</i>
WL C(5(and Urban Planning 86: 153–161
WoS6.56	Paine and Ribic (2002) Comparison of riparian plant communities under four land
	management systems in southwestern Wisconsin <i>Agriculture, Ecosystems and Environment</i> 92: 93–105
WoS6.62	Paoletti et al. (1999) Arthropods as bioindicators in agroecosystems of Jiang Han plain,
W050.02	Qianjiang city, Hubei China <i>Critical Reviews in Plant Sciences</i> 18(3):457–465
WoS6.82	Petit and Usher (1998) Biodiversity in agricultural landscapes: the ground beetle
	communities of woody uncultivated habitats <i>Biodiversity and Conservation</i> 7: 1549-1561
WoS6.91	Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas,
	Mexico Diversity and Distributions 12: 61-69
WoS7.28	Rhoades et al. (2004) Soil properties and soil Nitrogen dynamics of prairie-like forest
	openings and surrounding forests in Kentucky's Knobs region The American Midland
	Naturalist 152:1–11
WoS7.43	Sage et al. (2015) Using fledged brood counts of hedgerow birds to assess the effect of
	summer agri-environment scheme options <i>Ecological Indicators</i> 57: 376–383
WoS7.65	Schmuki and de Blois (2009) Population structures and individual performances of <i>Trillium</i>
	grandiflorum in hedgerow and forest habitats Plant Ecology 202:67–78
WoS7.84	Silva and Prince (2008) The conservation value of hedgerows for small mammals in Prince
W-07.02	Edward Island, Canada <i>The American Midland Naturalist</i> 159(1): 110-124
WoS7.93	Slade et al. (2013) Life-history traits and landscape characteristics predict macro-moth regresses to forget fragmentation $F_{aclogy}(M(7))$, 1510, 1520
	responses to forest fragmentation <i>Ecology</i> 94(7): 1519–1530

WoS7.94	Smith et al. (2008) The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems <i>Agriculture, Ecosystems and Environment</i> 127: 119–125
WoS8.19	Sullivan and Sullivan (2006) Plant and small mammal diversity in orchard versus non-crop
	habitats Agriculture, Ecosystems and Environment 116: 235–243
WoS8.23	Tang et al. (2014) Effects of corridor networks on plant species composition and diversity
	in an intensive agriculture landscape Chinese Geographical Science 24(1): 93-103
WoS8.27	Tattersall et al. (2002) Is habitat linearity important for small mammal communities on
	farmland? Journal of Applied Ecology 39(4): 643-652
WoS8.69	Vaughan et al. (2007) Spatial ecology and conservation of two sloth species in a cacao
	landscape in limón, Costa Rica Biodiversity Conservation 16: 2293-2310
WoS10.8	Assandri et al. (2018) Beautiful agricultural landscapes promote cultural ecosystem
	services and biodiversity conservation Agriculture, Ecosystems and Environment 256: 200-
	210
WoS10.25	Burrow et al. (2018) Influence of connectivity & topsoil management practices of a
	constructed technosol on pedofauna colonization: A field study Applied Soil Ecology
	123(SI):416-419
WoS10.157	Van Den Berge et al. (2018) Species diversity, pollinator resource value and edibility
	potential of woody networks in the countryside in northern Belgium. Agriculture,
	Ecosystems & Environment 259: 119-126
	Leosystems & Environment 257. 117-120

<u>SECTION C:</u> Studies used for comparing ecosystem services provided by farmland with hedgerows and farmland without hedgerows.

Identifier	Reference
WoS1.5	Agus et al. (1997) Soil-water and soil physical properties under contour hedgerow systems on sloping oxisols. <i>Soil & Tillage Research</i> 40: 185-199
WoS1.8	Alegre & Rao (1996) Soil and water conservation by contour hedging in the humid tropics of Peru. <i>Agriculture, Ecosystem and Environment</i> 57: 17-25
WoS1.80	Borin et al. (2010) Multiple functions of buffer strips in farming areas. <i>European Journal</i> of Agronomy 32 (1):103-111
WoS1.90	Boutin (2006) Comparison of the vegetation and seedbanks of soybean fields, adjacent boundaries, and hedgerows in Ontario. <i>Canadian Journal of Plant Science</i> 86 (2): 557-567
WoS10.107	Garzia et al.(2018) Effects of vegetation structure and landscape complexity on insect parasitism across an agricultural frontier in Argentina <i>Basic and Applied Ecology</i> 29: 69–78
WoS10.138	Sharma et al. (2018) Entomopathogenic fungi in Portuguese vineyards soils: suggesting a 'Galleria-Tenebrio-bait method' as bait insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana) <i>MycoKeys</i> 38: 1–23
WoS10.139	Sharma et al. (2018) Soil chemical properties barely perturb the abundance of entomopathogenic <i>Fusarium oxysporum</i> : a case study using a generalized linear mixed model for microbial pathogen occurrence count data <i>Pathogens</i> 7: 89
WoS10.15	Baumert et al. (2018) Greenhouse gas and energy balance of <i>Jatropha biofuel</i> production systems of Burkina Faso <i>Energy for Sustainable Development</i> 42: 14–23
WoS10.71	Holden et al. (2019) The role of hedgerows in soil functioning within agricultural landscapes <i>Agriculture, Ecosystems and Environment</i> 273: 1–12
WoS2.10	Burgio and Sommaggio (2007) Syrphids as landscape bioindicators in Italian agroecosystems <i>Agriculture, Ecosystems and Environment</i> 120: 416–422
WoS2.53	Dainese et al. (2017) High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields <i>Journal of Applied Ecology</i> 54:380–388
WoS3.51	Franco (1998) Hedgerows and non point source pollution: field test and landscape planning <i>Key Concepts in Landscape Ecology</i> 392-398

WoS3.84	Girma et al. (2000) Insect pests and beneficial arthropod populations under different hedgerow intercropping systems in semiarid Kenya <i>Agroforestry Systems</i> 50: 279–292
WoS4.17	Hauser (2008) Groundnut/cassava/maize intercrop yields over three cycles of planted tree
	fallow/crop rotations on ultisol in southern Cameroon <i>Biological Agriculture and</i>
	Horticulture 25:379-399
WoS4.22	Henry et al. (2009) Biodiversity, carbon stocks and sequestration potential in
	aboveground biomass in smallholder farming systems of western Kenya Agriculture,
	<i>Ecosystems and Environment</i> 12:238–252
WoS4.70	Jones et al. (2001) The effect of provenance on the performance of <i>Crataegus monogyna</i>
	in hedges Journal of Applied Ecology 38:952-962
WoS4.87	Koudokpon et al. (1994) Priority setting in research for sustainable land use: the case of
	the Adja Plateau, Benin Agroforestry Systems 26:101-122
WoS5.31	Luptacik et al (2012) Diversity and community structure of soil Oribatida (Acari) in an
	arable field with alluvial soils. European Journal of Soil Biology 50:97-105
WoS5.37	Macfadyen et al. (2011) Parasitoid diversity reduces the variability in pest control services
	across time on farms. Proceedings of the Royal Society B-Biological Sciences 278(1723):
	3387-3394
WoS5.38	MacLean et al. (2003) Impact of <i>Gliricidia sepium</i> and <i>Cassia spectabilis</i> hedgerows on
	weeds and insect pests of upland rice. Agriculture Ecosystems and Environment 94(3):
	275-288
WoS5.64	Menalled et al (2000) Post-dispersal weed seed predation in Michigan crop fields as a
	function of agricultural landscape structure. Agriculture Ecosystems & Environment
	77(3): 193-202
WoS5.89	Monokrousos et al (2006) Soil quality variables in organically and conventionally
	cultivated field sites. Soil Biology & Biochemistry 38(6): 1282-1289
WoS6.46bis	Ortiz (1995) Plot techniques for assessment of bunch weight in banana trials under two
	systems of crop management Agronomy Journal 87:63-69
WoS6.6	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-
WoS6.6	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i>
	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101
WoS6.6 WoS6.8	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena</i>
	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya Biology and Fertility of Soils 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (Leucaena leucocephala Lam. de Wit) and Napier grass (Pennisetum purpureum K. Schum) in
WoS6.8	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya Biology and Fertility of Soils 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (Leucaena leucocephala Lam. de Wit) and Napier grass (Pennisetum purpureum K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78
	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya Biology and Fertility of Soils 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (Leucaena leucocephala Lam. de Wit) and Napier grass (Pennisetum purpureum K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas,
WoS6.8 WoS6.91	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico Diversity and Distributions 12: 61-69
WoS6.8	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya Biology and Fertility of Soils 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (Leucaena leucocephala Lam. de Wit) and Napier grass (Pennisetum purpureum K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico Diversity and Distributions 12: 61-69Radrizanni et al. (2011) Soil organic carbon and total nitrogen under Leucaena
WoS6.8 WoS6.91 WoS7.11	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico Diversity and Distributions 12: 61-69Radrizanni et al. (2011) Soil organic carbon and total nitrogen under Leucaena
WoS6.8 WoS6.91	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow
WoS6.8 WoS6.91 WoS7.11 WoS7.20	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63
WoS6.8 WoS6.91 WoS7.11	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico Diversity and Distributions 12: 61-69Radrizanni et al. (2011) Soil organic carbon and total nitrogen under Leucaena leucocephala pastures in Queensland Crop & Pasture Science 62: 337–345Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India Agroforestry Systems 15: 51-63Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and
WoS6.8 WoS6.91 WoS7.11 WoS7.20	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico Diversity and Distributions 12: 61-69Radrizanni et al. (2011) Soil organic carbon and total nitrogen under Leucaena <i>leucocephala</i> pastures in Queensland Crop & Pasture Science 62: 337–345Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India Agroforestry Systems 15: 51-63Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and
WoS6.8 WoS6.91 WoS7.11 WoS7.20	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico Diversity and Distributions 12: 61-69Radrizanni et al. (2011) Soil organic carbon and total nitrogen under Leucaena leucocephala pastures in Queensland Crop & Pasture Science 62: 337–345Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India Agroforestry Systems 15: 51-63Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of</i> Soils 44(5): 727-744Sardiñas and Kremen (2015) Pollination services from field-scale agricultural
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744 Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207:
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48 WoS7.54	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena</i> <i>leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena</i> <i>leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India Agroforestry Systems 15: 51-63Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of</i> <i>Soils</i> 44(5): 727-744Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207: 17–25
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48 WoS7.54	Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N- labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya Agroforestry Systems 31: 59-78Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico Diversity and Distributions 12: 61-69Radrizanni et al. (2011) Soil organic carbon and total nitrogen under Leucaena <i>leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India Agroforestry Systems 15: 51-63Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of</i> <i>Soils</i> 44(5): 727-744Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent Agriculture, Ecosystems and Environment 207: 17–25Sehgal (2011) Growth and productivity of Ocimum basilicum influenced by the
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48 WoS7.54	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744 Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207: 17–25 Sehgal (2011) Growth and productivity of <i>Ocimum basilicum</i> influenced by the application of organic manures under <i>Leucaena leucocephala</i> hedgerows in western Himalayan mid hills <i>Range Management and Agroforestry</i> 32(2):83-86 Seiter et al. (1999) Crop yield and tree-leaf production in three planting patterns of
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48 WoS7.54 WoS7.73	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744 Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207: 17–25 Sehgal (2011) Growth and productivity of <i>Ocimum basilicum</i> influenced by the application of organic manures under <i>Leucaena leucocephala</i> hedgerows in western Himalayan mid hills <i>Range Management and Agroforestry</i> 32(2):83-86 Seiter et al. (1999) Crop yield and tree-leaf production in three planting patterns of temperate-zone alley cropping in Oregon, USA Agroforestry Systems 46: 273–288
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48 WoS7.54 WoS7.73	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744 Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207: 17–25 Sehgal (2011) Growth and productivity of <i>Ocimum basilicum</i> influenced by the application of organic manures under <i>Leucaena leucocephala</i> hedgerows in western Himalayan mid hills <i>Range Management and Agroforestry</i> 32(2):83-86 Seiter et al. (1999) Crop yield and tree-leaf production in three planting patterns of
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48 WoS7.54 WoS7.73 WoS7.74 WoS7.74	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744 Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207: 17–25 Sehgal (2011) Growth and productivity of <i>Ocimum basilicum</i> influenced by the application of organic manures under <i>Leucaena leucocephala</i> hedgerows in western Himalayan mid hills <i>Range Management and Agroforestry</i> 32(2):83-86 Seiter et al. (1999) Crop yield and tree-leaf production in three planting patterns of temperate-zone alley cropping in Oregon, USA Agroforestry Systems 46: 273–288 Shively (1999) Risks and returns from soil conservation: evidence from low-income farms in the Philippines <i>Agricultural Economics</i> 21:53-67
WoS6.8 WoS6.91 WoS7.11 WoS7.20 WoS7.48 WoS7.54 WoS7.73	 Mugendi et al. (2000) Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya <i>Biology and Fertility of Soils</i> 31:97–101 Mureithi et al. (1995) Productivity of alley farming with leucaena (<i>Leucaena leucocephala</i> Lam. de Wit) and Napier grass (<i>Pennisetum purpureum</i> K. Schum) in coastal lowland Kenya <i>Agroforestry Systems</i> 31: 59-78 Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69 Radrizanni et al. (2011) Soil organic carbon and total nitrogen under <i>Leucaena leucocephala</i> pastures in Queensland <i>Crop & Pasture Science</i> 62: 337–345 Rao et al. (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India <i>Agroforestry Systems</i> 15: 51-63 Sánchez Moreno et al. (2008) Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm <i>Biology and Fertility of Soils</i> 44(5): 727-744 Sardiñas and Kremen (2015) Pollination services from field-scale agricultural diversification may be context-dependent <i>Agriculture, Ecosystems and Environment</i> 207: 17–25 Sehgal (2011) Growth and productivity of <i>Ocimum basilicum</i> influenced by the application of organic manures under <i>Leucaena leucocephala</i> hedgerows in western Himalayan mid hills <i>Range Management and Agroforestry</i> 32(2):83-86 Seiter et al. (1999) Crop yield and tree-leaf production in three planting patterns of temperate-zone alley cropping in Oregon, USA Agroforestry Systems 46: 273–288 Shively (1999) Risks and returns from soil conservation: evidence from low-income

WoS7.95	Smukler et al. (2010) Biodiversity and multiple ecosystem functions in an organic
	farmscape Agriculture, Ecosystems and Environment 139: 80–97
WoS8.24	Tang et al (2014) Farmers' sustainable strategies for soil conservation on sloping arable
	lands in the upper Yangtze river basin China Sustainability 6: 4795-1806
WoS8.25	TangYa et al. (2003) Incorporation of mulberry in contour hedgerows to increase overall
	benefits: a case study from Ningnan County, Sichuan Province China Agricultural
	<i>Systems</i> 76: 775–785
WoS8.37	Thiel et al. (2015) Using hedgerow biodiversity to enhance the carbon storage of farmland
	in the Fraser River delta of British Columbia Journal of Soil and Water Conservation
	70(4): 247-256
WoS8.48	Tossah et al. (1999) Alley cropping in the moist savanna of West-Africa: II. Impact on
	soil productivity in a North-to-South transect in Togo Agroforestry Systems 42: 229–244
WoS8.69	Vaughan et al. (2007) Spatial ecology and conservation of two sloth species in a cacao
	landscape in limón, Costa Rica Biodiversity Conservation 16: 2293-2310
WoS8.82	Vourc'h et al. (2008) Mammal and bird species distribution at the woodland-pasture
	interface in relation to the circulation of ticks and pathogens Animal Biodiversity and
	Emerging Diseases 1149: 322–325
WoS8.91	Whitmore et al. (2000) An analysis of the economic values of novel cropping systems in
	N. E. Thailand and S. Sumatra Netherlands Journal of Agricultural Science 48: 105-114
WoSE.4	Timberlake et al (2019) Phenology of farmland floral resources reveals seasonal gaps in
	nectar availability for bumblebees. Journal of Applied Ecology 56(7): 1585-1596

<u>SECTION D:</u> Studies used for comparing the ecosystem services provided by farmland with hedgerows and natural habitat.

Identifier	Reference
WoS10.26	Byrne and delBarco-Trillo (2019) The effect of management practices on bumblebee densities in hedgerow and grassland habitats <i>Basic and Applied Ecology</i> 35: 28–33
WoS3.12	Dulaurent et al. (2012) Hide and seek in forests: colonization by the pine processionary moth is impeded by the presence of nonhost trees <i>Agricultural and Forest Entomology</i> 14: 19–27
WoS3.20	Endels et al. (2004) Population structure and adult plant performance of forest herbs in three contrasting habitats <i>Ecography</i> 27(2):225-241
WoS3.57	Fritz and Merriam (1996) Fencerow and forest edge architecture in eastern Ontario farmland <i>Agriculture, Ecosystems and Environment</i> 59: 159-170
WoS3.63	Fuller et al. (2014) The response of ground-dwelling spiders (Araneae) and hoverflies (Diptera: Syrphidae) to afforestation assessed using within-site tracking <i>Forestry</i> 87: 301–312
WoS6.86	Pfister et al. (2017) Positive effects of local and landscape features on predatory flies in European agricultural landscapes <i>Agriculture, Ecosystems and Environment</i> 239: 283–292
WoS6.91	Pinkus-Rendón et al. (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico <i>Diversity and Distributions</i> 12: 61-69
WoS7.28	Rhoades et al. (2004) Soil properties and soil Nitrogen dynamics of prairie-like forest openings and surrounding forests in Kentucky's Knobs region <i>The American Midland Naturalist</i> 152:1–11
WoS7.64	Schmuki and de Blois (2009) Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches <i>Oecologia</i> 160:721–733
WoS7.94	Smith et al. (2008) The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems <i>Agriculture, Ecosystems and Environment</i> 127: 119–125
WoS8.82	Vourc'h et al. (2008) Mammal and bird species distribution at the woodland-pasture interface in relation to the circulation of ticks and pathogens <i>Animal Biodiversity and Emerging</i> <i>Diseases</i> 1149: 322–325