
Technical System Detail 

Here we have captured various implementation details, to the extent that it inspires and facilitates 
further designs to systems that can orchestrate stimulation patterns across many channels delivered to 
brain. 

The approach described here is intended to be easy to use once implemented, so that researchers only 
need worry about the stimuli they want to generate at the MEA interface and not the circuitry needed 
to generate those signals. Once implemented, we found the design can work without issue for years. 

 

 
Overall workflow: 
 
An experimenter uses a computer, connected via USB port to a digital controller.  The experimenter can 
store up to 64 waveforms (minutes long each) in the controller’s external memory, and then specify a 
series of those waveforms to appear at any number of 64 eventual output channels. The controller 
provides routing signals to a data bus, which drive a digital analog converter (DAC) and provide mapping 
signals to signal routing circuitry, which then distribute the analog output of the DAC across the many 
channels, which use “sample and holds” to sample the output at specific moments and hold that voltage 
level until the next sample arrives.  In this way, a scalable number of channels can be controlled via 
patterns designed and sent from standard software in a personal computer. 
 
User Interface:  
 
We selected MATLAB (MathWorks, Inc.) because it is ubiquitous in academic environments and is a very 
powerful data analysis tool. A Universal Serial Bus (USB) link provides the connection between the 
computer and the controller. We selected the USB protocol to link MATLAB and the FPGA because, in 
addition to being available on almost all modern PC’s, the protocol supports very high transmission 
rates. 
 
Controller: 



 
The controller hardware is a digital system implemented using the Verilog hardware description 
language. We use Opal Kelly’s XEM3001v2 prototyping board which integrates a Spartan–3 FPGA and 
USB controller chip. 

 
One of our primary objectives is to make this device as easy to program as possible. Opal Kelly provides 
a dynamically linked library (DLL) for developing applications capable of communicating with the 
Spartan–3 FPGA via USB. 

Time-division Multiplexing: 
 
A fundamental problem with systems which produce multiple simultaneous signals is that as the 
number of channels grow, the number of wires and output pins on device components quickly grow out 
of control. For our system, with each digital signal channel requiring eight data bits and one control bit, 
we would require 576 output pins on our controller for a parallel design. We use a time–division 
multiplexing architecture to limit the output of the controller to one 16–bit signal.  
 

 
Time-division multiplexing is a method of interleaving multiple signal streams into one very fast signal 
stream. This has the added advantage of allowing us to easily scale the number of channels the system 
can support without making significant physical changes to the control signal (doubling the number of 
supported channels would only requiring the addition of one more bit to the data bus). 
 

Digital logic: 

The below figure shows an overview of the digital logic applied to the FPGA. We implemented this using 
our FPGA in conjunction with Verilog HDL: 



 

 
FrontPanel (Opal Kelly) provides a Verilog USB Host Controller implementation that can be used to 
communicate with a computer with an appropriate FrontPanel DLL. The dispatch 
module routes commands from the computer to the memory (to load the waveforms onto the circuit) 
and to the waveform queue/FIFO (to execute the waveforms). When a stimulation 
command is received, the waveform ID is put into the appropriate FIFO controller. Each FIFO controller 
has a sample counter that increments on the rising edge of the spulse signal, keeping track of the 
sample number. When the counter reaches the maximum value (255), the waveform ID at the head of 
the FIFO is discarded and the next waveform in the FIFO is processed. 
 
The Timer module manages the channel FIFO logic. When spulse is high, it indicates that it is time to 
advance the sample counter by one. All non-empty channel FIFOs increment their channel counters on 
the rising edge of spulse. The frequency that the Timer module operates at is set by two parameters in 
the Verilog code. PULSE DT determines how many clock cycles each channel has available to assert its 
output. SH DELAY determines the amount of delay before the sample and hold signal is held high. 
 
Sending a stimulation pattern to the digital controller: 
 
The communication protocol layered on top of USB is abstracted from us by the Opal Kelly USB 
controller, or host interface. In the Verilog implementation, our module interacts with endpoints, which 
are data transmission/reception structures. We define two primary endpoints, one intended for 
transmitting waveform data and one intended for transmitting stimulation requests. Digital triggers sent 
from the stimulator can be used to synchronize acquisition systems with the stimulation clock cycle. 
 



A stimulation pattern is a 16-bit block of data comprised of a channel ID and a waveform ID. When a 
request is triggered, the waveform ID is routed by the demultiplexer M1 (Figure 4) to one of 64 FIFO 
structures corresponding to the correct channel.  
 
Data bus: 
 
The digital controller communicates with the demultiplexer analog circuitry via a 16-bit data bus. 
 

 
 
The demultiplexer circuitry routes the data bits to the appropriate channel using the channel bits. The 
SH control bit is the control signal for the sample and hold IC. After signal demultiplexing, the samples 
are converted to analog stimulation signals. The encoding of 64 different data streams onto the data bus 
is discussed in the next section. 
 
Demultiplexing and digital to analog conversion: 
 
The FPGA continuously outputs voltage values and their assigned channels. We only use one DAC in the 
system. The voltage value on the data bus gets continuously converted to an analog time-multiplexed 
signal. Each channel has a sample and hold IC which is only enabled when the channel value on the data 
bus matches the channel to which the sample and hold chip is assigned. In this way, the analog values 
only update for the appropriate channel. 



 

Signal descriptions:  
 
addr_lo (3 bits): Specifies to which channel within a block of eight the current stimulation signal will be 
directed (if a given 8-channel S&H is enabled)  
addr_hi (3 bits): Indicates which block (set of 8 channels) will sample the current DAC output. Specifying 
a block and channel chooses exactly one electrode to receive a particular stimulus.  
data (8 bits): Specifies the amplitude of a stimulus during a given time window.  
inh_a-inh_h (1 bit each): 1 bit goes to each of 8 8-channel sample-and-holds, so that up to one is 
enabled at a time and samples the current DAC output. These signals are the “nand” of each output bit 
of the 3x8 bit mux (selecting an 8-channel block) and the sample signal. Therefore, if the sample signal is 
deasserted, none of the 8-channel sample and holds will be sampling the current DAC output.  
sample (1 bit): Only when this signal is asserted and a particular block is selected by the current addr_hi 
signal will a particular 8-channel S&H sample the analog output of the DAC. This signal is asserted 
slightly after data is updated (specifically, the delay is equal to the propagation delay of the DAC), 
ensuring that the S&H is sampling a valid DAC output. 
analog_out: Analog output of the DAC whose amplitude is determined by the 8-bit digital input. The 
range of values this signal can take is determined by the potentiometers at the output of the DAC.  
stim0-stim63 (analog): Analog signals sent to each electrode of MEA. 

 



Digital/analog converter: 
 
One of the useful features of this device is the ability for the user to choose the amplitude or stimulation 
strength of the signal sent to each electrode during each clock cycle. Each digital bit transmitted from 
the computer can take on one of only two possible values, a high voltage level, VH, and a low voltage 
level, VL. Since more flexibility in the range of possible stimulus amplitudes is obviously desirable, the 
DAC is used to generate a wider range of analog outputs given 8 bits of data specifying the signal 
amplitude. 8 bits of data allows for 256 possible values, so the DAC output is one of 256 equally spaced 
values between two given voltage levels. As illustrated in the above figure, only one DAC will be used to 
generate analog signals to all 64 electrodes. The TLC7628 DAC was chosen in this design for its low 
propagation delay and settling time (t_p + t_s = 180ns). It is set up in its bipolar configuration, so the 
analog output can take both positive and negative values. In bipolar configuration, a data input of 
8’b00000000 specifies an analog output of -Vmax, an input of 8’b11111111 specifies an analog output of 
+Vmax, and an input of 8’b10000000 specifies an analog output of 0V. 

8-channel sample and hold: 
 
Since only one DAC chip is used for the entire system, and thus only one analog stimulus is transmitted 
at a time, the system needs to somehow hold the analog output at one channel as the output is being 
modified at other channels. Each 8-channel sample and hold chip (8Ch S&H) is capable of sampling an 
analog value at one of its eight outputs (although the above figure only depicts one 8Ch S&H, the system 
actually has eight, allowing for 64 electrodes to be stimulated). Each 8Ch S&H takes as inputs an inhibit 
signal (1 bit), three channel_select bits (addr_lo), and an analog input. If inhibit is deasserted, the 8Ch 
S&H samples the DAC output and streams the signal to the output channel selected by the 
channel_select bits. All seven unselected channels are in “hold mode,” meaning each holds the last 
value sampled by that channel. When inhibit is asserted, all 8 channels are in “hold mode.” SMP18, the 
high speed version of the 8-channel sample and hold, was chosen in our design, again because of its 
relatively small propagation delay. 

3-to-8 multiplexer: 
 
Since only one DAC is used to generate analog signals for up to 64 electrodes, addressing information is 
needed to channel each signal appropriately. The first stage of signal channeling directs the DAC output 
to one of eight 8Ch S&H. The 3x8 mux takes three bits of input (specifying one of eight possible values) 
and outputs 8 bits (out0-out7), only one of which is asserted at a given time. For example, if the 3-bit 
input is 011 (corresponding to a decimal value of 3), then out3 will be asserted and out0-out2 and out4-
out7 will be de-asserted. Each output 8 bit of the mux “nanded” with sample acts as the inhibit signal for 
one of the 8Ch S&H. This setup allows no more than one 8Ch S&H to be enabled at once. 
 
Signal conditioning: 
 
Finally, sample-and-hold channels are fed through a final-stage op-amp for signal conditioning on each 
channel (OP495, Analog Electronics). A few additional op-amps, or/nor gates, and 146 voltage overrides 
are scattered throughout the circuit for further optimization. 
 



 
Resultant analog stimulation 
 
The amplitude of a stimulus at a given time is determined both by the eight data bits from the data bus 
as well as by the DAC’s external potentiometers which set the DAC’s gain and will be delivered and 
instantaneously stored by the sample and hold addressed by the routing bits.  The system will cycle 
through all sample and holds, loading them up with their next analog voltage, and once all channels 
have been updated it will cycle through the next time point of each.  In this way a steady stream of 
temporally precise analog voltage levels are dispatched across a large number of channels.  In principle 
this design can also be readily scaled, doubling channels with each new address bit added to the routing 
logic. 
 
Connecting from the analog circuitry to the multi-electrode array: 
 
The output of the 64 channels arising from the sample-and-holds was wired into a unified SCSI 
connector via a National Instruments SCB-68 connector box.  This in turn connected to a 68-pin SCSI 
cable that came with a MultiChannel Systems MEA60 connector platform, and which connects to its 
built-in connector port. A planar multi-electrode array chip from MultiChannel Systems was then loaded 
into the connector platform, thus enabling end-to-end communication channels from a software 
environment into an electrode-rich stimulation area. 
 

    


