A Appendices

A.1 Comparison of Feedforward and Feedback Control for
Reference Tracking

We consider a discrete-time, linear system of first order with sampling period
T = 0.02 seconds, output y € R, and input v € R. The system is affected by an
input delay of one sample leading to state-space dynamics

WneN, x(n+1)= {0(')5 (ﬂ x(n) + m u(n) (1)

where x € R? is the state vector. The system’s output is affected by measure-
ment noise, i.e.,

Vn € N>o, y(n)=[1 0]x(n)+w(n), (2)

where w(n) € R is measurement noise that is drawn from a normal distribution
with zero-mean and variance 1074, i.e.,

Vn € Nsg, w(n) ~N(0,107%). (3)

The task consists of having the output y follow the reference r € R over a finite
horizon of N = 100 samples with

Vn € [1,N], r(n)=sin(2rTn). (4)
The feedforward control strategy consists of applying an input trajectory

UfF ‘= [’U,FF(O) UFF(I) UFF(N — 1)]T . (5)

The input values are determined by optimization such that the squared tracking
error is minimized, i.e.,

N
upr = argmin' Y [r(n) = y(n))” (6)

n=1

The feedback control strategy consists of a generic, non-linear function to en-
sure that performance is not limited by the structure of the feedback law. In
particular, the input values upg are computed as the sum of ten polynomials
of tenth order, to which the current and nine previous error samples serve as
inputs, i.e., Vn € [1, N],

10 10 4

upp(n) =Y Y kij[r(n) —y(n)) . (7)

i=1 j=1
The set of feedback parameters K = {k;; | i,j € [1,10]} is determined via
optimization such that the squared tracking error is minimized, i.e.,

= argmin 3 r(n) — y(o)]” (8)



A.2 Reference Trajectories
The first reference r; € R is given by, Vn € [1,25],

[r1]n, = 75sin(27Tn) . (9)
The second reference ro € R0 is given by, Vn € [1,50],

57sin(1.3871T'n) Vn < 17
2], = 57 VI7T<n<31 []. (10)
57sin(1.387T'(n — 13)) V3l <n

The third reference r3 € R™ is given by, Vn € [1,71],

—20sin(1.57Tn) Vn < 16
ira],, = —20 V16 < n < 31 el ()
BT —20sin(1.57T(n — 11)) V3l <n <43 'V

46sin(1.87T (n + 13)) V43 < n

A.3 Feedback Control of the TWIPR

Consider the dynamics of the TWIPR moving along a straight line. The robot
has two degrees of freedom, namely, the pitch angle ® € R and the position
s € R. The state vector follows with

]T

x=[0 6 s 3 (12)

The motor torque serves as input variable and is denoted by u € R. To stabilize
the TWIPR in its upright equilibrium, the nonlinear dynamics are approximated
by a linear, discrete-time model with state vector x € R* of the form

VYneN, x(n+1)=Ax(n)+ Bu(n) (13)

using a sampling period of T" = 0.02 seconds. The stabilizing control input
uc € R is computed by linear state feedback of the form

VneN, uc(n)=-Kx(n), (14)

where the feedback matrix K is designed by LQR [1].
To track the desired reference maneuvers, the feedback input uc is super-
posed by a learned feedforward input ur, leading to the overall input

YneN, u(n)=uc(n)+ur(n). (15)

A.4 Policy Gradient Implementation

In this section, we briefly outline the implementation details of the finite-
difference policy gradient method that was used as a baseline comparison in
Section 4.2. For a detailed discussion of the method and its implementation,



see [2]. The finite-difference gradient estimation was chosen because this method
is expected to be highly efficient due to the deterministic nature of the simula-
tions, see [2].

In order to apply the policy gradient scheme to the learning task of Section
4.2, the policy is defined as the input trajectory u;, and the reward of a trial
reward is defined as

. 1
Vj € N>g, Ri:= §(r - yj)T(r -yj)- (16)

On each iteration, the policy is updated by
Vj € N>g, ujy1 =u; +aVR;, (17)

where VR; is an estimate of the reward’s gradient with respect to the input
trajectory, and o € R is a step-size. To estimate the gradient, W & N roll-out
trials with the perturbed policies u; + A,, are performed, and the gradient is
determined by least-squares estimation, as detailed in [2]. In the simulations,
the step-size was chosen as a = 50, one roll-out per trial, i.e., W = 1, was used,
and the policy permutations were drawn according to

A, ~ N(0,0.001I). (18)

In contrast to the method proposed in this paper, the parameters of the policy
gradient scheme had to be tuned manually and were chosen to yield a satisfying
trade-off between a fast speed of learning and robust convergence for all three
reference trajectories.
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