APPENDICES

1 PROOF OF (39)

Let B(0, \/n) be the closed ball of RNo with center 0 and radius /11 and let Sy, 1 be the surface of the
unit-radius sphere in R0~ We have
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2 PROOFS OF PROPOSITION[3

As € — 0, the diagonal elements of ) i, with index / ¢ K tend to zero, which in #7) amounts to
assuming that the corresponding components of the input perturbation are zero. The existence of the limit
Qo Kk, is secured based on the remark at the end of Sectio

@: If e = 1, then Q, x, = Idy, and @7) reduces to ([20).

(i)} Forevery i € {1,...,m —1},let A; € Dy, ({204 — 1,1}). Then, by using the triangle inequality,
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By taking the supremum of both sides with respect to the (A;)1<i<m—1 matrices, we deduce that
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On the other hand,
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where, by using the fact that Q. x, = Q¢ g,
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Since (¢ x,) Qe K, is a diagonal matrix with elements lower than or equal to 1, ||(Qw x,) Q. i,
1 and it follows from (68)) that



Q Q.
I 0 < 9,0 (71)

Let (¢, €') €]0,1]% with € < ¢/. We have Q g, < Q. , and, according to
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@ If Ko C Ky, then Q¢ x, =< €k, and the result follows from [(ii1)
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By using the relation
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Foreveryi € {1,...,m — 1}, let A; € Dy, ({2a; — 1,1}). Then,
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We deduce that
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Furthermore, according toand forevery K C {1,..., Np},
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This yields
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The proof is similar to that of by noticing that, if P is a partition of {1,..., Ny}, then
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(viii); For every @ # K C {1,..., No}, 19,(,2;"K = ﬁ%O’K + o(e). It is thus sufficient to prove this inequality
in the limit case when € — 0. For every i € {1,...,m — 1}, let A; € Dy, ({20; — 1,1}). Letz € RM
and let z be the projection of x onto the space of vectors whose components indexed by {1,..., No} \ K
are zero. We have thus rx, = rk, + 7k,. Then,

WAt - MWAQYE 2l

= ||WmAm—1 e 'A1W117]K0||q

S ||WmAm—1 c 'A1W1$K1 ||q + ”WmAm—l e AIWL'EKQ ||q

= [[WinAm—1- ‘A1WIQ(1)7/H§1$K1 g + Wi A1+ A1W193)7/H§2$K2||q

< WAy - 'A1W19(1),/]§1 2k, [lp + [WinAm—1 - “A1W1Q(1),/H§2

P,q p,q| LKy Hp' (81)

By using Holder’s inequality, we deduce that
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Since ||z, b + |2k, |lh = ||k, |[b, it follows that
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Taking the supremum with respect to (A;)i1<i<m—1 and majorizing the supremum of the sum in the
right-hand side by the sum of the suprema yield (33).
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